Abstract

This article proposes a new formulation for a phase change model based on the enthalpy-porosity idea. A general one-energy equation model (1EEM) is extended to deal with the melting and solidification of pure substances and alloys. Before melting and after solidification, solid material is seen as a porous media with low porosity and very small permeability. During phase change, thermal equilibrium in the mushy zone is assumed. Viscous and form drag in the volume-averaged momentum equation are reduced as the temperature rises above the melting point. In the energy equation, latent heat is treated implicitly in the accumulation term instead of explicitly as in most works in the literature. Liquid fraction for the entire field is updated after a new temperature field is calculated. Thermophysical properties are updated with the new liquid fraction field. Governing equations are discretized according to the control-volume method. Algebraic equation sets are relaxed with the Simple Method. Inner iterations make use of the Strong Implicit Procedure. Preliminary results indicate good agreement with the literature for pure substances.

References

1.
Basu
,
B.
, and
Date
,
A. W.
,
1988
, “
Numerical Modelling of Melting and Solidification Problems—A Review
,”
Sadhana
,
13
(
3
), pp.
169
213
.10.1007/BF02812200
2.
Hu
,
H.
, and
Argyropoulos
,
S. A.
,
1996
, “
Mathematical Modelling of Solidification and Melting: A Review
,”
Modell. Simul. Mater. Sci. Eng.
,
4
(
4
), pp.
371
396
.10.1088/0965-0393/4/4/004
3.
Voller
,
V. R.
,
1996
, “
An Overview of Numerical Methods for Solving Phase Change Problems
,”
Advances in N Umerical Heat Transfer
,
W.
Minkowycz
, ed., Vol.
1
,
CRC Press
,
Boca Raton, FL
.
4.
Pardeshi
,
R.
,
Voller
,
V. R.
,
Singh
,
A. K.
, and
Dutta
,
P.
,
2008
, “
An Explicit–Implicit Time Stepping Scheme for Solidification
,”
Int. J. Heat Mass Transfer
,
51
(
13–14
), pp.
3399
3409
.10.1016/j.ijheatmasstransfer.2007.11.060
5.
Sultana
,
K.
,
Dehghani
,
S.
,
Pope
,
K.
, and
Muzychka
,
Y.
,
2018
, “
Numerical Techniques for Solving Solidificaion and Melting Phase Change Problems
,”
Numer. Heat Transfer Part B Fundam.
,
73
(
3
), pp.
129
145
.10.1080/10407790.2017.1422629
6.
Belhamadia
,
Y.
,
Kane
,
A. S.
, and
Fortin
,
A.
,
2012
, “
An Enhanced Mathematical Model for Phase Change Problems With Natural Convection
,”
Int. J. Numer. Anal. Model
, Series B
3
(
2
), pp.
192
206
.http://www.global-sci.com/intro/article_detail/preview?id=278&pdf=https://doc.global-sci.org/uploads/Issue/IJNAMB/v3n2/32-192_short.pdf
7.
Wolff
,
F.
, and
Viskanta
,
R.
,
1988
, “
Solidification of a Pure Metal at a Vertical Wall in the Presence of Liquid Superheat
,”
Int. J. Heat Mass Transfer
,
31
(
8
), pp.
1735
1744
.10.1016/0017-9310(88)90285-2
8.
Gau
,
C.
, and
Viskanta
,
R.
,
1986
, “
Melting and Solidification of a Pure Metal on a Vertical Wall
,”
ASME J. Heat Transfer
,
108
(
1
), pp.
174
181
.10.1115/1.3246884
9.
Braunsfurth
,
M. G.
,
Skeldon
,
A. C.
,
Juel
,
A.
,
Mullin
,
T.
, and
Riley
,
D. S.
,
1997
, “
Free Convection in Liquid Gallium
,”
J. Fluid Mech.
,
342
, pp.
295
314
.10.1017/S0022112097005569
10.
Jones
,
B. J.
,
Sun
,
D.
,
Krishnan
,
S.
, and
Garimella
,
S. V.
,
2006
, “
Experimental and Numerical Study of Melting in a Cylinder
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2724
2738
.10.1016/j.ijheatmasstransfer.2006.01.006
11.
Kowalewski
,
T. A.
, and
Rebow
,
M.
,
1999
, “
Freezing of Water in the Differentially Heated Cubic Cavity
,”
Int. J. Comput. Fluid Dyn.
,
11
(
3–4
), pp.
193
210
.10.1080/10618569908940874
12.
Voller
,
C.
, and
Prakash
,
V. R.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection Diffusion Mushy Region Phase Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
.10.1016/0017-9310(87)90317-6
13.
Voller
,
V. R.
, and
Shadabi
,
L.
,
1984
, “
Enthalpy Methods for Tracking a Phase Change Boundary in Two Dimensions
,”
Int. Commun. Heat Mass Transfer
,
11
(
3
), pp.
239
249
.10.1016/0735-1933(84)90040-X
14.
Price
,
P. H.
, and
Slack
,
M. R.
,
1954
, “
The Effect of Latent Heat on Numerical Solutions of the Heat Flow Equation
,”
Br. J. Appl. Phys.
,
5
(
8
), pp.
285
287
.10.1088/0508-3443/5/8/304
15.
Voller
,
V. R.
, and
Swaminathan
,
C. R.
,
1991
, “
General Source-Based Method FOR Solidification Phase Change
,”
Numer. Heat Transfer, Part B Fundam. Int. J. Comput. Methodol.
,
19
(
2
), pp.
175
189
.10.1080/10407799108944962
16.
Chakraborty
,
P. R.
,
2017
, “
Enthalpy Porosity Model for Melting and Solidification of Pure-Substances With Large Difference in Phase Specific Heats
,”
Int. Commun. Heat Mass Transfer
,
81
, pp.
183
189
.10.1016/j.icheatmasstransfer.2016.12.023
17.
Singh
,
A.
,
Kumar
,
A.
, and
Kumar
,
K.
,
2019
,
Numerical Modelling of Pure Metal Solidification Using OpenFOAM
,
HAL
,
Kanpur
, Report No. Hal-02101324v2.
18.
Pena
,
F. J. C.
, and
de Lemos
,
M. J. S.
,
2021
, “
Unsteady Heat Conduction With Phase Change Applied to a Novel Thermal Plug and Abandonment Process
,”
Int. J. Therm. Sci.
,
170
, p.
107155
.10.1016/j.ijthermalsci.2021.107155
19.
Pena
,
F. J. C.
, and
de Lemos
,
M. J. S.
,
2023
, “
Simulation of Multidimensional Unsteady Heat Transfer With Aluminothermic Reaction and Phase Transition
,”
Int. J. Heat Mass Transfer
,
213
(
10
), p. 124365
.10.1016/j.ijheatmasstransfer.2023.124365
20.
Pena
,
F. J. C.
, and
de Lemos
,
M. J. S.
,
2023
, “
Numerical Solution of Coupled Heat Transfer With Phase-Change and Thermite Reaction
,”
Int. J. Energy Clean Environ.
, epub.10.1615/InterJEnerCleanEnv.2023049144
21.
Saini
,
D. K.
, and
Jha
,
P. K.
,
2023
, “
Numerical Modeling and Experimental Study of Solidification Behavior of Al-Mg2Si Composite Sheet Fabricated Using Continuous Casting Route
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
10
), p.
101002
.10.1115/1.4062758
22.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. J.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer
,
13
(
3
), pp.
297
318
.10.1080/10407788808913615
23.
Coutinho
,
J. E. A.
, and
de Lemos
,
M. J. S.
,
2012
, “
Laminar Flow With Combustion in Inert Porous Media
,”
Int. Commun. Heat Mass Transfer
,
39
(
7
), pp.
896
903
.10.1016/j.icheatmasstransfer.2012.06.002
24.
de Lemos
,
M. J. S.
,
2012
,
Turbulence in Porous Media: Modeling and Applications
, 2nd ed.,
Elsevier
,
Amsterdam, The Netherlands
.
25.
Braga
,
E.
, and
de Lemos
,
M. J. S.
,
2009
, “
Larninar and Turbulent Free Convection in a Composite Enclosure
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
588
596
.10.1016/j.ijheatmasstransfer.2008.07.012
26.
Braga
,
E. J.
, and
de Lemos
,
M. J. S.
,
2005
, “
Heat Transfer in Enclosures Having a Fixed Amount of Solid Material Simulated With Heterogeneous and Homogeneous Models
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4748
4765
.10.1016/j.ijheatmasstransfer.2005.05.016
27.
de Lemos
,
M. J. S.
, and
Braga
,
E. J.
,
2018
, “
Use of Porous-Continuum and Continuum Models for Determining the Permeability of Porous Cavities Under Turbulent Free Convection
,”
Numer. Heat Transfer, Part B: Fundamentals
,
73
(
2
), pp.
78
93
.10.1080/10407790.2017.1420328
28.
Ergun
,
S.
,
1949
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(
2
), pp.
89
94
.
29.
Bonacina
,
C.
,
Comini
,
G.
,
Fasano
,
A.
, and
Primicerio
,
M.
,
1973
, “
Numerical Solution of Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
16
(
10
), pp.
1825
1832
.10.1016/0017-9310(73)90202-0
30.
Comini
,
G.
,
Del Guidice
,
S.
,
Lewis
,
R. W.
, and
Zienkiewicz
,
O. C.
,
1974
, “
Finite Element Solution of Non‐Linear Heat Conduction Problems With Special Reference to Phase Change
,”
Int. J. Numer. Methods Eng.
,
8
(
3
), pp.
613
624
.10.1002/nme.1620080314
31.
Swaminathan
,
C. R.
, and
Voller
,
V. R.
,
1993
, “
On the Enthalpy Method
,”
Int. J. Numer. Methods Heat Fluid Flow
,
3
(
3
), pp.
233
244
.10.1108/eb017528
32.
Hahn
,
D.
, and
Ozisik
,
N.
,
2012
,
Heat Conduction
, 3rd ed.,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.