Abstract

The current investigation is based on Williamson's features of a hybrid nanofluid flow over a curved surface made mixture of silver (Ag) and titanium dioxide (TiO2) with engine oil. Under the presumption of a low magnetic Reynolds number, a constant homogenous magnetic field is applied. Consideration is given to the ramping temperature and the time-varying surface concentration. Thermal absorption and first-order consistent chemical reaction are also taken into account. To create a hybrid nanofluid, silver (Ag), and titanium nanoparticles are dispersed in a base fluid made of water and engine oil. Quasi-linearization technique and Finite difference scheme are employed on the nondimensional partial differential equations. All physical parameters of practical importance, such as velocity, temperature, and concentration profile are analyzed and provided in tables and graphs along with the impact of physical parameters. As the Williamson parameter (W) increases, the surface velocity of the steep plate decreases. Also, as the parameter temperature ratio of Nt and Rd increases, the forces opposing the flow field reduce the friction force, and the thermal field increases with temperature effects.

References

1.
Williamson
,
R. V.
,
1929
, “
The Flow of Pseudoplastic Materials
,”
Ind. Eng. Chem.
,
21
(
11
), pp.
1108
1111
.10.1021/ie50239a035
2.
Sivaiah
,
S.
,
2013
, “
MHD Flow of a Rotating Fluid Past a Vertical Porous Flat Plate in the Presence of Chemical Reaction and Radiation
,”
J. Eng. Phys. Thermophys.
,
86
, pp.
1328
1336
.10.1007/s10891-013-0957-1
3.
Mabood
,
F.
,
Khan
,
W. A.
, and
Ismail
,
A. I. M.
,
2015
, “
MHD Boundary Layer Flow and Heat Transfer of Nanofluids Over a Nonlinear Stretching Sheet: A Numerical Study
,”
J. Magn. Magn. Mater.
,
374
(
15
), pp.
569
576
.10.1016/j.jmmm.2014.09.013
4.
Krishnamurthy
,
M. R.
,
Prasannakumara
,
B. C.
,
Gireesha
,
B. J.
, and
Gorla
,
R. S. R.
,
2016
, “
Effect of Chemical Reaction on MHD Boundary Layer Flow and Melting Heat Transfer of Williamson Nanofluid in Porous Medium
,”
Eng. Sci. Technol. Int. J.
,
19
(
1
), pp.
53
61
.10.1016/j.jestch.2015.06.010
5.
Afify
,
A. A.
, and
Elgazery
,
N. S.
,
2016
, “
Effect of a Chemical Reaction on Magnetohydrodynamic Boundary Layer Flow of a Maxwell Fluid Over a Stretching Sheet With Nanoparticles
,”
Particuology
,
29
, pp.
154
161
.10.1016/j.partic.2016.05.003
6.
Hayat
,
T.
,
Shafiq
,
A.
, and
Alsaedi
,
A.
,
2016
, “
Hydromagnetic Boundary Layer Flow of Williamson Fluid in the Presence of Thermal Radiation and Ohmic Dissipation
,”
Alexandria Eng. J.
,
55
(
3
), pp.
2229
2240
.10.1016/j.aej.2016.06.004
7.
Zaman
,
S.
, and
Gul
,
M.
,
2019
, “
Magnetohydrodynamic Bioconvective Flow of Williamson Nanofluid Containing Gyrotactic Microorganisms Subjected to Thermal Radiation and Newtonian Conditions
,”
J. Theor. Biol.
,
479
(
21
), pp.
22
28
.10.1016/j.jtbi.2019.02.015
8.
Hayat
,
T.
, and
Nadeem
,
S.
,
2017
, “
Heat Transfer Enhancement With Ag-CuO/Water Hybrid Nanofluid
,”
Results Phys.
,
7
, pp.
2317
24
.10.1016/j.rinp.2017.06.034
9.
Das
,
D.
,
Tarafdar
,
B.
,
Jana
,
R. N.
, and
Makinde
,
O. D.
,
2019
, “
Influence of Rotational Buoyancy on Magneto-Radiation-Convection Near a Rotating Vertical Plate
,”
Eur. J. Mech. B Fluids
,
75
, pp.
209
218
.10.1016/j.euromechflu.2018.09.010
10.
Khan
,
S.
,
Nie
,
Y.
, and
Ali
,
B.
,
2019
, “
Multiple Slip Effects on Magnetohydrodynamic Axisymmetric Buoyant Nanofluid Flow Above a Stretching Sheet With Radiation and Chemical Reaction
,”
Symmetry
,
11
(
9
), p.
1171
.10.3390/sym11091171
11.
Rauf
,
A.
,
Abbas
,
Z.
, and
Shehzad
,
S. A.
,
2019
, “
Magnetohydrodynamics Slip Flow of a Nanofluid Through an Oscillatory Disk Under Porous Medium Supremacy
,”
Heat Transfer
,
49
(
2
), pp.
3446
3465
.10.1002/htj.21548
12.
Manjunatha
,
S.
,
Ammani Kuttan
,
B.
,
Jayanthi
,
S.
,
Chamkha
,
C.
, and
Gireesha
,
B. J.
,
2019
, “
Heat Transfer Enhancement in the Boundary Layer Flow of Hybrid Nanofuids Due to Variable Viscosity and Natural Convection
,”
Heliyon
,
5
(
4
), p. e01469.10.1016/j.heliyon.2019.e01469
13.
Mansour
,
M. A.
,
Ahmed
,
S. E.
, and
Rashad
,
A. M.
,
2016
, “
MHD Natural Convection in a Square Enclosure Using Nanofluid With the Influence of Thermal Boundary Conditions
,”
J. Appl. Fluid Mech.
,
9
(
7
), pp.
2515
2525
.10.18869/acadpub.jafm.68.236.24409
14.
EL-Hakiem
,
M. A.
, and
Rashad
,
A. M.
,
2007
, “
The Effect of Radiation on Non-Darcy Free Convection From a Vertical Cylinder Embedded in a Fluid-Saturated Porous Medium With a Temperature Dependent Viscosity
,”
J. Porous Media
,
10
(
2
), pp.
209
218
.
15.
Reddy
,
S. R. R.
,
Reddy
,
P. B. A.
, and
Rashad
,
A. M.
,
2020
, “
Activation Energy Impact on Chemically Reacting Eyring–Powell Nanofluid Flow Over a Stretching Cylinder
,”
Arab. J. Sci. Eng.
,
45
(
7
), pp.
5227
5242
.10.1007/s13369-020-04379-9
16.
EL-Kabeir
,
S. M. M.
,
Rashad
,
A. M.
, and
Gorla
,
R. S. R.
,
2007
, “
Unsteady Mhd Combined Convection Over a Moving Vertical Sheet in a Fluid Saturated Porous Medium With Uniform Surface Heat Flux
,”
Math. Comput. Modell.
,
46
(
3–4
), pp.
384
397
.10.1016/j.mcm.2006.11.010
17.
Chamkha
,
A. J.
,
Mansour
,
M. A.
,
Rashad
,
A. M.
,
Kargarsharifabad
,
H.
, and
Armaghani
,
T.
,
2020
, “
Magnetohydrodynamic Mixed Convection and Entropy, Analysis of Nanofluid in Gamma-Shaped Porous Cavity
,”
J. Thermophys. Heat Transfer
,
34
(
4
), pp.
836
847
.10.2514/1.T5983
18.
Rashad
,
A.
,
Chamkha
,
A.
,
Mallikarjuna
,
B.
, and
Abdou
,
M.
,
2018
, “
Mixed Bioconvection Flow of a Nanofluid Containing Gyrotactic Microorganisms Past a Vertical Slender Cylinder
,”
Front. Heat Mass Transfer
,
10
, p.
21
.
19.
Khan
,
M.
,
Salahuddin
,
T.
,
Malik Yousaf
,
M.
,
Khan
,
F.
, and
Hussain
,
A.
,
2019
, “
Variable Diffusion and Conductivity Change in 3d Rotating Williamson Fluid Flow Along With Magnetic Field and Activation Energy
,”
Int. J. Numer. Methods Heat Fluid Flow
,
30
(
5
), pp.
2467
2484
.https://www.emerald.com/insight/content/doi/10.1108/HFF-02-2019-0145/full/html
20.
Yusuf
,
T. A.
, and
Mabood
,
F.
,
2020
, “
Slip Effects and Entropy Generation on Inclined MHD Flow of Williamson Fluid Through a Permeable Wall With Chemical Reaction Via DTM
,”
Math. Modell. Eng. Probl.
,
7
, pp.
1
9
.10.18280/mmep.070101
21.
Jamil
,
F.
, and
Ali
,
H. M.
,
2020
, “
Applications of Hybrid Nanofluids in Different Fields, Hybrid Nanofluids for Convection Heat Transfer
,”
Hybrid Nanofluids Convect. Heat Transfer
,
6
, pp.
215
254
.10.1016/B978-0-12-819280-1.00006-9
22.
Sarada
,
K.
,
Punith Gowda
,
R. J.
,
Sarris
,
I. E.
,
Naveen Kumar
,
R.
, and
Prasannakumara
,
B. C.
,
2021
, “
Effect of Magnetohydrodynamics on Heat Transfer Behaviour of a Non-Newtonian Fluid Flow Over a Stretching Sheet Under Local Thermal Non-Equilibrium Condition
,”
Fluids
,
6
(
8
), p.
264
.10.3390/fluids6080264
23.
Shafiq
,
A.
,
Lone
,
S. A.
,
Sindhu
,
T. N.
,
Al-Mdallal
,
Q. M.
, and
Rasool
,
G.
,
2021
, “
Statistical Modeling for Bioconvective Tangent Hyperbolic Nanofluid Towards Stretching Surface With Zero Mass Flux Condition
,”
Sci. Rep.
,
11
(
1
), p.
13869
.10.1038/s41598-021-93329-y
24.
Acharya
,
N.
, and
Mabood
,
F.
,
2021
, “
On the Hydrothermal Features of Radiative Fe3O4-Graphene Hybrid Nanofluid Flow Over a Slippery Bended Surface With Heat Source/Sink
,”
J. Therm. Anal. Calorim.
,
143
(
2
), pp. 1273–1289.10.1007/s10973-020-09850-1
25.
Srinivasulu
,
T.
, and
Shankar Goud
,
S.
,
2021
, “
Effect of Inclined Magnetic Field on Flow Heat and Mass Transfer of Williamson Nanofluid Over a Stretching Sheet
,”
Case Stud. Therm. Eng.
,
23
, p.
100819
.10.1016/j.csite.2020.100819
26.
Li
,
Y.-X.
,
Alshbool
,
M. H.
,
Lv
,
Y.-P.
,
Khan
,
I.
,
Khan
,
M.
, and
Issakhov
,
A.
,
2021
, “
Heat and Mass Transfer in Mhd Williamson Nanofluid Flow Over an Exponentially Porous Stretching Surface
,”
Case Stud. Therm. Eng.
,
26
, p.
100975
.10.1016/j.csite.2021.100975
27.
Ahmed
,
K.
, and
Akbar
,
T.
,
2021
, “
Numerical Investigation of Magnetohydrodynamics Williamson Nanofluid Flow Over an Exponentially Stretching Surface
,”
Adv. Mech. Eng.
,
13
(
5
), pp.
1
12
.10.1177/16878140211019875
28.
Salmi
,
A.
,
Madkhali
,
H. A.
,
Nawaz
,
M.
,
Alharbi
,
S. O.
, and
Alqahtani
,
A. S.
,
2022
, “
Numerical Study on Non-Fourier Heat and Mass Transfer in Partially Ionized Mhd Williamson Hybrid Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
133
(
3
), p.
105967
.10.1016/j.icheatmasstransfer.2022.105967
29.
Awan
,
A. U.
,
Shah
,
S. A. A.
, and
Ali
,
B.
,
2022
, “
Bio-Convection Effects on Williamson Nanofluid Flow With Exponential Heat Source and Motile Microorganism Over a Stretching Sheet
,”
Chin. J. Phys.
,
77
, pp.
2795
2810
.10.1016/j.cjph.2022.04.002
30.
Ali
,
H. M.
,
Generous
,
M. M.
,
Ahmad
,
F.
, and
Irfan
,
M.
,
2017
, “
Experimental Investigation of Nucleate Pool Boiling Heat Transfer Enhancement of TiO2 Water Based Nanofluids
,”
Appl. Therm. Eng.
,
113
, pp.
1146
1151
.10.1016/j.applthermaleng.2016.11.127
31.
Das
,
S.
,
Saha
,
B.
, and
Bhaumik
,
S.
,
2017
, “
Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization With Crystalline Tio2 Nanostructure
,”
Appl. Therm. Eng.
,
113
, pp.
1345
1357
.10.1016/j.applthermaleng.2016.11.135
32.
Xuan
,
Y.
,
Duan
,
H.
, and
Li
,
Q.
,
2014
, “
Enhancement of Solar Energy Absorption Using a Plasmonic Nanofluid Based on TiO2/Ag Composite Nanoparticles
,”
RSC Adv.
,
4
, pp.
16206
16213
.10.1039/C4RA00630E
33.
Subramaniyan
,
A.
,
Subramaniyan
,
A. L.
,
Lakshmi Priya
,
S.
, and
Ilangovan
,
R.
,
2015
, “
Energy Harvesting Through Optical Properties of TiO2 and cTiO2 Nanofluid for Direct Absorption Solar Collectors
,”
Int. J. Renew. Energy Res.
,
5
, pp.
542
547
.https://dergipark.org.tr/en/pub/ijrer/issue/16071/167972#:~:text=Since%20carbon%20is%20a%20good,TiO2%20and%20C%2DTiO2%20nanofluids
34.
Kahani
,
M.
,
Zeinali Heris
,
S.
, and
Mousavi
,
S. M.
,
2014
, “
Experimental Investigation of tio2/Water Nanofluid Laminar Forced Convective Heat Transfer Through Helical Coiled Tube
,”
Heat Mass Transf. Stoffuebertrag.
50, pp.
1563
1573
.10.1007/s00231-014-1367-4
35.
Rashid
,
F. L.
, and
Hashim
,
A.
,
2014
, “
Maximizing of Solar Absorption by (TiO2–Water) Nanofluid With Glass Mixture
,”
Int. J. Res. Eng. Technol.
,
2
, pp.
1563
1573
.https://www.researchgate.net/publication/310450253_Maximizing_of_solar_absorption_by_TiO2-water_nanofluid_with_glass_mixture
36.
Kumar
,
N.
, and
Sonawane
,
S. S.
,
2016
, “
Experimental Study of Thermal Conductivity and Convective Heat Transfer Enhancement Using CuO and TiO2 Nanoparticles
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
98
107
.10.1016/j.icheatmasstransfer.2016.04.028
37.
Khedkar
,
R. S.
,
Sonawane
,
S. S.
, and
Wasewar
,
K. L.
,
2014
, “
Heat Transfer Study on Concentric Tube Heat Exchanger Using TiO2 Water Based Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
163
169
.10.1016/j.icheatmasstransfer.2014.07.011
38.
Barzegarian
,
R.
,
Keshavarz Moraveji
,
M.
, and
Aloueyan
,
A.
,
2016
, “
Experimental Investigation on Heat Transfer Characteristics and Pressure Drop of BPHE (Brazed Plate Heat Exchanger) Using TiO2 Water Nanofluid
,”
Exp. Therm. Fluid Sci.
,
74
, pp.
11
18
.10.1016/j.expthermflusci.2015.11.018
39.
Rafati
,
M.
,
Hamidi
,
A. A.
, and
Shariati Niaser
,
M.
,
2012
, “
Application of Nanofluids in Computer Cooling Systems (Heat Transfer Performance of Nanofluids)
,”
Appl. Therm. Eng.
,
45
, pp.
9
14
.10.1016/j.applthermaleng.2012.03.028
40.
Ijam
,
A.
, and
Saidur
,
R.
,
2012
, “
Nanofluid as a Coolant for Electronic Devices (Cooling of Electronic Devices)
,”
Appl. Therm. Eng.
,
32
, pp.
76
82
.10.1016/j.applthermaleng.2011.08.032
41.
Sandhya
,
D.
,
Chandra Sekhara Reddy
,
M.
, and
Vasudeva Rao
,
V.
,
2016
, “
Improving the Cooling Performance of Automobile Radiator With Ethylene Glycol Water Based TiO2 Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
74
, pp.
121
126
.10.1016/j.icheatmasstransfer.2016.09.002
42.
Chen
,
J.
, and
Jia
,
J.
,
2016
, “
Experimental Study of TiO2 Nanofluid Coolant for Automobile Cooling Applications
,”
Mater. Res. Innov.
, 21(3), pp.
177
181
.10.1080/14328917.2016.1198549
43.
Devarajan
,
Y.
,
Dinesh Babu
,
M.
,
Beemkumar
,
N.
, and
Amith Kishore
,
P.
,
2018
, “
Experimental Investigation on the Influence of Titanium Dioxide Nanofluid on Emission Pattern of Biodiesel in a Diesel Engine
,”
Atmos. Pollut. Res.
,
9
, pp.
47
52
.10.1016/j.apr.2017.06.003
44.
Xia
,
G. D.
,
Liu
,
R.
,
Wang
,
J.
, and
Du
,
M.
,
2016
, “
The Characteristics of Convective Heat Transfer in Microchannel Heat Sinks Using Al2O3 and TiO2 Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
256
264
.10.1016/j.icheatmasstransfer.2016.05.034
45.
Sohel
,
M. R.
,
Saidur
,
R.
,
Mohd Sabri
,
M. F.
,
Kamalisarvestani
,
M.
,
Elias
,
M. M.
, and
Ijam
,
A.
,
2013
, “
Investigating the Heat Transfer Performance and Thermophysical Properties of Nanofluids in a Circular Micro-Channel
,”
Int. Commun. Heat Mass Transfer
,
42
, pp.
75
81
.10.1016/j.icheatmasstransfer.2012.12.014
46.
Khaleduzzaman
,
S. S.
,
Sohel
,
M. R.
,
Saidur
,
R.
, and
Selvaraj
,
J.
,
2015
, “
Convective Performance of 0.1 Volume Fraction of TiO2/Water Nanofluid in an Electronic Heat Sink
,”
Procedia Eng.
,
105
, pp.
412
417
.10.1016/j.proeng.2015.05.027
47.
Ali
,
H. M.
, and
Arshad
,
W.
,
2016
, “
Thermal Performance Investigation of Staggered and Inline Pin Fin Heat Sinks Using Water Based Rutile and Anatase tio2 Nanofluids
,”
Energy Convers. Manag
, 106, pp.
793
803
.10.1016/j.enconman.2015.10.015
48.
Laad
,
M.
, and
Jatti
,
V. K. S.
, 2018, “
Titanium Oxide Nanoparticles as Additives in Engine Oil
,”
J. King Saud University Eng. Sci.
, 30, pp.
116
122
.10.1016/j.jksues.2016.01.008
49.
Schlichting
,
H.
,
2000
,
Boundary Layer Theory
,
Springer
,
New York
.
50.
WA
,
Khan.
, and
I
,
Pop.
,
2010
, “
Boundary Layer Flow of a Nanofluid Past a Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
53
(
11
), pp.
2477
2483
.
51.
Devi
,
S.
, and
Devi
,
S.
,
2017
, “
Heat Transfer Enhancement of Cu–Al2O3 Water Hybrid Nanofluid Flow Over a Stretching Sheet
,”
J. Nigerian Math. Soc.
,
36
(
2
), pp.
419
433
.
52.
Salahuddin
,
T.
,
Khan
,
M.
,
Saeed
,
T.
,
Ibrahim
,
M.
, and
Chu
,
Y.
,
2021
, “
Induced MHD Impact on Exponentially Varying Viscosity of Williamson Fluid Flow With Variable Conductivity and Diffusivity
,”
Case Stud. Therm. Eng.
,
25
, p.
100895
.10.1016/j.csite.2021.100895
53.
Alharbi
,
K. A. M.
,
Ahmed
,
A. E. S.
,
Sidi
,
M. O.
,
Ahammad
,
N. A.
,
Mohamed
,
A.
,
El-Shorbagy
,
M. A.
,
Bilal
,
M.
, and
Marzouki
,
R.
,
2022
, “
Computational Valuation of Darcy Ternary–Hybrid Nanofluid Flow Across an Extending Cylinder With Induction Effects
,”
Micromachines
, 13(4), p.
588
.10.3390/mi13040588
54.
Megahed
,
M. A.
,
2019
, “ Williamson
Fluid Flow Due to a Nonlinearly Stretching Sheet With Viscous Dissipation and Thermal Radiation
,”
J. Egypt Math. Soc.
,
27
, p.
12
.10.1186/s42787-019-0016-y
55.
Yahya
,
A. U.
,
Salamat
,
N.
,
Huang
,
W.-H.
,
Siddique
,
I.
,
Abdal
,
S.
, and
Hussain
,
S.
,
2021
, “
Thermal Charactristics for the Flow of Williamson Hybrid Nanofluid (MOS2 + Zno) Based With Engine Oil Over a Streched Sheet
,”
Case Stud. Therm. Eng.
,
26
, p.
101196
.10.1016/j.csite.2021.101196
56.
Ahmad
,
S.
,
Ali
,
K.
,
Nisar
,
K. S.
,
Faridi
,
A. A.
,
Khan
,
N.
,
Jamshed
,
W.
,
Khan
,
T. M. Y.
, and
Saleel
,
C. A.
,
2021
, “
Features of Cu and TiO2 in the Flow of Engine Oil Subject to Thermal Jump Conditions
,”
Sci. Rep.
, 11, p.
19592
.10.1038/s41598-021-99045-x
57.
Murtaza
,
S.
,
Ali
,
F.
,
Sheikh
,
N. A.
,
Khan
,
I.
, and
Nisar
,
K. S.
,
2021
, “
Analysis of Silver Nanoparticles in Engine Oil
,”
Atangana–Baleanu Fract. Model. Comput., Mater. Contin.
,
67
(
3
), pp.
2915
2932
.10.32604/cmc.2021.013757
58.
G.
I.
, and
Singh
,
A. K.
,
2021
, “
MHD Flows on Irregular Boundary Over a Diverging Channel With Viscous Dissipation Effect
,”
Int. J. Numer. Methods Heat Fluid Flow
, 31(7), pp.
2112
2127
.https://www.emerald.com/insight/content/doi/10.1108/HFF-06-2020-0368/full/html
59.
Chapra
,
S. C.
, and
Canale
,
R. P.
,
2016
,
Numerical Methods for Engineers
, 5th ed.,
MC Graw Hill Education
,
India
.
60.
Wang
,
C.
,
1989
, “
Free Convection on a Vertical Stretching Surface
,”
J. Appl. Math. Mech.
,
69
(
11
), pp.
418
420
.10.1002/zamm.19890691115
61.
Khan
,
W.
, and
Pop
,
I.
,
2010
, “
Boundary-Layer Flow of a Nanofluid Past a Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
53
(
11
), pp.
2477
2483
.10.1016/j.ijheatmasstransfer.2010.01.032
You do not currently have access to this content.