Abstract

A numerical study was conducted on the multiple jet impingement heat transfer of the double-wall cooling with high blockage ratio ribs of various configurations. Three different blockage ratios (BR = 0.2, 0.3, and 0.5) and two rib arrangements relative to the effusion holes (l/Sx = 0.25 and 0.75) were thoroughly examined using the RANS method with the SST–KIC turbulence model, considering the Kato–Launder modification (K), intermittency (I), and crossflow (C) transition effects. The ratio of jet-to-target plate spacing to jet diameter (H/d) was fixed to be 1, and Reynolds numbers varied in the range of 4000–16,000. Furthermore, the computed data on the rib roughed wall were also compared with those on a flat plate for the double-wall cooling. The results demonstrate that the installation of the high blockage ribs significantly decreases the detrimental crossflow effect due to the blockage effect of the ribs and intensively disturbs the jet flow in flow passing over the ribs, thereby enhancing the heat transfer performance. For the impingement/effusion cooling, the arrangement of the rib downstream of the effusion holes (l/Sx = 0.25) shows more advantages, and the heat transfer level rises quickly as BR increases. The best thermal-hydraulic performance and heat transfer uniformity on the rib roughed target plate is both obtained at BR = 0.3, which can be increased by up to 10% and 8%, respectively, compared to those on the flat plate.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
.
2.
Bunker
,
R. S.
,
2007
, “
As Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges
,”
ASME J. Turbomach.
,
129
(
2
), pp.
193
201
.10.1115/1.2464142
3.
Chyu
,
M. K.
, and
Siw
,
S. C.
,
2013
, “
Recent Advances of Internal Cooling Techniques for Gas Turbine Airfoils
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021008
.10.1115/1.4023829
4.
Han
,
B.
, and
Goldstein
,
R. J.
,
2006
, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
147
161
.10.1111/j.1749-6632.2001.tb05849.x
5.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
(
v
), pp.
565
631
.10.1016/S0065-2717(06)39006-5
6.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement − A Review,” Heat Transfer Research
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.10.1615/HeatTransRes.v42.i2.30
7.
Ekkad
,
S. V.
, and
Singh
,
P.
,
2021
, “
A Modern Review on Jet Impingement Heat Transfer Methods
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
, p.
064001
.10.1115/1.4049496
8.
Barbosa
,
F. V.
,
Teixeira
,
S. F. C. F.
, and
Teixeira
,
J. C. F.
,
2023
, “
Convection From Multiple Air Jet Impingement, A Review
,”
Appl. Therm. Eng.
,
218
(
143
), p.
119307
.10.1016/j.applthermaleng.2022.119307
9.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
,
92
(
1
), pp.
73
82
.10.1115/1.3445306
10.
Hollworth
,
B. R.
, and
Berry
,
R. D.
,
1978
, “
Heat Transfer From Arrays of Impinging Jets With Large Jet-to-Jet Spacing
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
100
(
2
), pp.
352
357
.10.1115/1.3450808
11.
Rao
,
Y.
,
2018
, “
Jet Impingement Heat Transfer in Narrow Channels With Different Pin Fin Configurations on Target Surfaces
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
7
), p.
072201
.10.1115/1.4039015
12.
Kim
,
T.
,
Jung
,
E. Y.
,
Bang
,
M.
,
Lee
,
C.
,
Moon
,
H. K.
, and
Cho
,
H. H.
,
2022
, “
Heat Transfer Measurements for Array Jet Impingement With Castellated Wall
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
3
), p.
031009
.10.1115/1.4052315
13.
Li
,
W.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2018
, “
A Novel Method for Designing Fan-Shaped Holes With Short Length-to-Diameter Ratio in Producing High Film Cooling Performance for Thin-Wall Turbine Airfoil
,”
ASME J. Turbomach.
,
140
(
9
), p.
091004
.10.1115/1.4041035
14.
Singh
,
P.
, and
Ekkad
,
S. V.
,
2017
, “
Effects of Spent Air Removal Scheme on Internal-Side Heat Transfer in an Impingement-Effusion System at Low Jet-to-Target Plate Spacing
,”
Int. J. Heat Mass Transfer
,
108
, pp.
998
1010
.10.1016/j.ijheatmasstransfer.2016.12.104
15.
Andreini
,
A.
,
Cocchi
,
L.
,
Facchini
,
B.
,
Mazzei
,
L.
, and
Picchi
,
A.
,
2018
, “
Experimental and Numerical Investigation on the Role of Holes Arrangement on the Heat Transfer in Impingement/Effusion Cooling Schemes
,”
Int. J. Heat Mass Transfer
,
127
, pp.
645
659
.10.1016/j.ijheatmasstransfer.2018.06.102
16.
Choi
,
W.
, and
Kim
,
S.
,
2022
, “
Effect of Effusion Hole Arrangement on Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
192
, p.
122900
.10.1016/j.ijheatmasstransfer.2022.122900
17.
Wang
,
L.
,
Sundén
,
B.
,
Borg
,
A.
, and
Abrahamsson
,
H.
,
2011
, “
Control of Jet Impingement Heat Transfer in Crossflow by Using a Rib
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4157
4166
.10.1016/j.ijheatmasstransfer.2011.06.004
18.
Tepe
,
A. Ü.
,
Arslan
,
K.
,
Yetişken
,
Y.
, and
Uysal
,
Ü.
,
2019
, “
Effects of Extended Jet Holes to Heat Transfer and Flow Characteristics of the Jet Impingement Cooling
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
8
), p.
082202
.10.1115/1.4043893
19.
Taslim
,
M. E.
,
Bakhtari
,
K.
, and
Liu
,
H.
,
2003
, “
Experimental and Numerical Investigation of Impingement on a Rib-Roughened Leading-Edge Wall
,”
ASME J. Turbomach.
,
125
(
4
), pp. 682–291.10.1115/1.1624848
20.
Chang
,
H.
,
Zhang
,
J.
, and
Huang
,
T.
,
1998
, “
Experimental Investigation on Impingement Heat Transfer From Rib Roughened Surface Within Arrays of Circular Jet: Effect of Geometric Parameters
,”
ASME
Paper No. 98-GT-208.10.1115/98-GT-208
21.
Spring
,
S.
,
Xing
,
Y.
, and
Weigand
,
B.
,
2012
, “
An Experimental and Numerical Study of Heat Transfer From Arrays of Impinging Jets With Surface Ribs
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
8
), p.
082201
.10.1115/1.4006155
22.
Chen
,
L.
,
Brakmann
,
R. G.
,
Weigand
,
B.
,
Rodriguez
,
J.
,
Crawford
,
M.
, and
Poser
,
R.
,
2017
, “
Experimental and Numerical Heat Transfer Investigation of an Impingement Jet Array With V-Ribs on the Target Plate and on the Impingement Plate
,”
Int. J. Heat Fluid Flow
,
68
, pp.
126
138
.10.1016/j.ijheatfluidflow.2017.09.005
23.
Brakmann
,
R.
,
Chen
,
L.
,
Poser
,
R.
,
Rodriguez
,
J.
,
Crawford
,
M.
, and
Weigand
,
B.
,
2019
, “
Heat Transfer Investigation of an Array of Jets Impinging on a Target Plate With Detached Ribs
,”
Int. J. Heat Fluid Flow
,
78
, p.
108420
.10.1016/j.ijheatfluidflow.2019.05.009
24.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2011
, “
Experimental and Numerical Investigation of Impingement Heat Transfer on a Flat and Micro-Rib Roughened Plate With Different Crossflow Schemes
,”
Int. J. Therm. Sci.
,
50
(
7
), pp.
1293
1307
.10.1016/j.ijthermalsci.2010.11.008
25.
Xing
,
Y.
, and
Weigand
,
B.
,
2010
, “
Experimental Investigation of Impingement Heat Transfer on a Flat and Dimpled Plate With Different Crossflow Schemes
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3874
3886
.10.1016/j.ijheatmasstransfer.2010.05.006
26.
Tan
,
L.
,
Zhang
,
J. Z.
, and
Xu
,
H. S.
,
2014
, “
Jet Impingement on a Rib-Roughened Wall Inside Semi-Confined Channel
,”
Int. J. Therm. Sci.
,
86
, pp.
210
218
.10.1016/j.ijthermalsci.2014.06.037
27.
Rao
,
Y.
,
Chen
,
P.
, and
Wan
,
C.
,
2016
, “
Experimental and Numerical Investigation of Impingement Heat Transfer on the Surface With Micro W-Shaped Ribs
,”
Int. J. Heat Mass Transfer
,
93
, pp.
683
694
.10.1016/j.ijheatmasstransfer.2015.10.022
28.
Tong
,
F.
,
Gou
,
W.
,
Zhao
,
Z.
,
Gao
,
W.
,
Li
,
H.
, and
Li
,
L.
,
2020
, “
Numerical Investigation of Impingement Heat Transfer on Smooth and Roughened Surfaces in a High-Pressure Turbine Inner Casing
,”
Int. J. Therm. Sci.
,
149
, p.
106186
.10.1016/j.ijthermalsci.2019.106186
29.
He
,
J.
,
Deng
,
Q.
, and
Feng
,
Z.
,
2022
, “
Heat Transfer Enhancement of Impingement Cooling With Corrugated Target Surface
,”
Int. J. Therm. Sci.
,
171
, p.
107251
.10.1016/j.ijthermalsci.2021.107251
30.
Hong
,
S. K.
,
Rhee
,
D. H.
, and
Cho
,
H. H.
,
2007
, “
Effects of Fin Shapes and Arrangements on Heat Transfer for Impingement/Effusion Cooling With Crossflow
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
129
(
12
), pp.
1697
1707
.10.1115/1.2767727
31.
Kim
,
S. H.
,
Ahn
,
K. H.
,
Park
,
J. S.
,
Jung
,
E. Y.
,
Hwang
,
K.
, and
Cho
,
H. H.
,
2017
, “
Local Heat and Mass Transfer Measurements for Multi-Layered Impingement/Effusion Cooling: Effects of Pin Spacing on the Impingement and Effusion Plate
,”
Int. J. Heat Mass Transfer
,
105
, pp.
712
722
.10.1016/j.ijheatmasstransfer.2016.10.007
32.
Rao
,
Y.
,
Liu
,
Y.
, and
Wan
,
C.
,
2018
, “
Multiple-Jet Impingement Heat Transfer in Double-Wall Cooling Structures With Pin Fins and Effusion Holes
,”
Int. J. Therm. Sci.
,
133
, pp.
106
119
.10.1016/j.ijthermalsci.2018.07.021
33.
Yang
,
Q.
,
Lin
,
Y.
,
Xu
,
Q.
,
Zhang
,
C.
, and
Sung
,
C.
,
2012
, “
Cooling Effectiveness of Impingement/Effusion Cooling With and Without Turbulence Promoter Ribs
,”
ASME
Paper, No. GT2012-69209.10.1115/GT2012-69209
34.
Rhee
,
D. H.
,
Nam
,
Y. W.
, and
Cho
,
H. H.
,
2004
, “
Local Heat/Mass Transfer With Various Rib Arrangements in Impingement/Effusion Cooling System With Crossflow
,”
ASME J. Turbomach.
,
126
(
4
), pp.
615
626
.10.1115/1.1791287
35.
Chang
,
S. W.
, and
Liou
,
H.
,
2009
, “
Heat Transfer of Impinging Jet-Array Onto Concave- and Convex-Dimpled Surfaces With Effusion
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4484
4499
.10.1016/j.ijheatmasstransfer.2009.03.050
36.
Hong
,
S. K.
,
Lee
,
D. H.
, and
Cho
,
H. H.
,
2009
, “
Heat/Mass Transfer in Rotating Impingement/Effusion Cooling With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3109
3117
.10.1016/j.ijheatmasstransfer.2009.01.031
37.
Wei
,
H.
, and
Zu
,
Y.
,
2023
, “
Experimental and Numerical Studies on the Enhanced Heat Transfer Performance and the Flow Resistance Characteristics of the Double-Wall Cooling Structure With Jet Impingement Holes and Pin Fins
,”
Int. J. Therm. Sci.
,
186
, p.
108109
.10.1016/j.ijthermalsci.2022.108109
38.
Kong
,
D.
,
Zhang
,
C.
,
Ma
,
Z.
,
Liu
,
C.
,
Isaev
,
S. A.
,
Guo
,
T.
, and
Xie
,
F.
,
2022
, “
Numerical Study on Flow and Heat Transfer Characteristics of Swirling Jet on a Dimpled Surface With Effusion Holes at Turbine Blade Leading Edge
,”
Appl. Therm. Eng.
,
209
, p.
118243
.10.1016/j.applthermaleng.2022.118243
39.
Andrews
,
G.
,
Hussain
,
R.
, and
Mkpadi
,
M.
,
2006
, “
Enhanced Impingement Heat Transfer: The Influence of Impingement x/d for Interrupted Rib Obstacles (Rectangular Pin Fins)
,”
ASME J. Turbomach.
,
128
(
2
), pp.
321
331
.10.1115/1.1860574
40.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
132
(
9
), p.
092201
.10.1115/1.4001633
41.
Wan
,
C. Y.
,
Rao
,
Y.
, and
Chen
,
P.
,
2015
, “
Numerical Predictions of Jet Impingement Heat Transfer on Square Pin-Fin Roughened Plates
,”
Appl. Therm. Eng.
,
80
, pp.
301
309
.10.1016/j.applthermaleng.2015.01.053
42.
Alenezi
,
A.
,
Almutairi
,
A.
,
Alhajeri
,
H.
,
Addali
,
A.
, and
Gamil
,
A.
,
2018
, “
Flow Structure and Heat Transfer of Jet Impingement on a Rib-Roughened Flat Plate
,”
Energies
,
11
(
6
), pp.
1
16
.10.3390/en11061550
43.
Tepe
,
A.
,
Uysal
,
U.
,
Yetisken
,
Y.
, and
Arslan
,
K.
,
2020
, “
Jet Impingement Cooling on a Rib Roughened Surface Using Extended Jet Holes
,”
Appl. Therm. Eng.
,
178
, p. 115601.10.1016/j.applthermaleng.2020.115601
44.
Ortega-Casanova
,
J.
, and
Castillo-Sanchez
,
S. I.
,
2017
, “
On Using Axisymmetric Turbulent Impinging Jets Swirling as Burger's Vortex for Heat Transfer Applications
,”
Appl. Therm. Eng.
,
121
, pp.
103
114
.10.1016/j.applthermaleng.2017.04.031
45.
Celik
,
B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Publications
,”
ASME J. Fluids Eng.
,
130
(
4
), p.
078001
.10.1115/1.2960953
46.
Rhee
,
D. H.
,
Choi
,
J. H.
, and
Cho
,
H. H.
,
2003
, “
Heat (Mass) Transfer on Effusion Plate in Impingement/Effusion Cooling Systems
,”
J. Thermophys. Heat Transfer
,
17
(
1
), pp.
95
102
.10.2514/2.6739
47.
Huang
,
H.
,
Sun
,
T.
,
Zhang
,
G.
,
Sun
,
L.
, and
Zong
,
Z.
,
2018
, “
Modeling and Computation of Turbulent Slot Jet Impingement Heat Transfer Using RANS Method With Special Emphasis on the Developed SST Turbulence Model
,”
Int. J. Heat Mass Transfer
,
126
, pp.
589
602
.10.1016/j.ijheatmasstransfer.2018.05.121
48.
Kato
,
M.
, and
Launder
,
B. E.
,
1993
, “
The Modeling of Turbulent Flow Around Stationary and Vibrating Square Cylinder
,”
Proceedings of Ninth Symposium on Turbulent Shear Flows
, Kyoto, Japan, Aug. 16–18, Vol. 9, pp.
10.4.1
10.4.6
.https://www.researchgate.net/publication/247931894_The_Modelling_of_Turbulent_Flow_Around_Stationary_and_Vibrating_Square_Cylinders
49.
Cho
,
H. H.
,
Lee
,
C. H.
, and
Kim
,
Y. S.
,
1998
, “
Characteristics of Heat Transfer in Impinging Jets by Control of Vortex Pairing
,”
ASME
Paper No. 98-GT-276.10.1115/98-GT-276
You do not currently have access to this content.