Abstract

A generic Monte Carlo ray-trace (MCRT) engine for computing radiation distribution factors (RDFs), working in tandem with an efficient finite volume formulation based on discrete Green’s functions (DGFs), has been used to solve a massive (2636 nodes) coupled radiation/conduction problem. Distribution factors computed using the MCRT method are known to produce unconditionally stable solutions to pure radiation problems even though the RDFs themselves do not conform exactly to the reciprocity principle. However, when these same RFDs are introduced into time-dependent finite volume conduction formulations based on DGFs, the resulting model is found to be fundamentally unstable due to inherent violations of the second law of thermodynamics. A novel approach to addressing this instability is presented and demonstrated for the case of a telescope typical of those employed to monitor the planetary energy budget from low Earth orbit.

References

1.
Barkstrom
,
B. R.
,
1984
, “
The Earth Radiation Budget Experiment (ERBE)
,”
Bull. Am. Meteorol. Soc.
,
65
(
11
), pp. 1170–1185 .10.1175/1520-0477(1984)065<1170:TERBE>2.0.CO;2
2.
Wielicki
,
B. A.
,
Barkstrom
,
B. R.
,
Harrison
,
E. F.
,
Lee
,
R. B.
,
Iii
,
G. L.
,
Smith
,
J.
, and
Cooper
,
E.
,
1996
, “
Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment
,”
Bull. Am. Meteorol. Soc.
,
77
(
5
), pp. 853–868.10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2
3.
Glumb
,
R.
,
Overbeck
,
J.
,
Lietzke
,
C.
,
Forsythe
,
J.
, and
Miller
,
J.
,
2016
, “
Radiation Budget Instrument (RBI) Performance Update
,” Conference on Characterization and Radiometric Calibration for Remote Sensing (
CALCON
), Logan, UT, July 31–Aug. 4.https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1225&context=calcon
4.
Mahan
,
J. R.
,
Yarahmadi
,
M.
, and
Vick
,
B.
,
2022
, “
Confronting Large-Scale Combined-Mode Radiation/Conduction Problems
,”
SPARC Workshop on Radiation Transport and Applications
,
IIT Bhubaneswar
,
Kansapada, Odisha, India
.
5.
Vick
,
B.
,
Mahan
,
J. R.
, and
Yarahmadi
,
M.
,
2022
, “
Combined-Mode Conduction/Radiation Heat Transfer Analysis Based on Discrete Green’s Functions
,”
7th Thermal Fluid Engineering Conference
,
University of Nevada
, Las Vegas, NV, May 15–18, p. 40915
.
6.
Sanchez
,
M. C.
,
Nevarez
,
F. J.
,
Mahan
,
J. R.
, and
Priestley
,
K. J.
,
2001
, “
Uncertainty and Confidence Intervals in Optical Design Using the Monte Carlo Ray-Trace Method
,”
SPIE, Sensors, Systems, and Next-Generation, Satellites IV
, Barcelona, Spain, Feb. 9, pp.
190
201
.10.1117/12.417119
7.
Yarahmadi
,
M.
,
Mahan
,
J. R.
, and
Priestley
,
K. J.
,
2019
, “
Uncertainty Analysis and Experimental Design in the Monte Carlo Ray-Trace Environment
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
3
), p.
032701
.10.1115/1.4042365
8.
Yarahmadi
,
M.
,
Mahan
,
J. R.
, and
Priestley
,
K. J.
,
2019
, “
Estimation and Use of the Radiation Distribution Factor Median for Predicting Uncertainty in the Monte Carlo Ray-Trace Method
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
6
), p.
062701
.10.1115/1.4043306
9.
Loehrke
,
R. I.
,
Dolaghan
,
J. S.
, and
Burns
,
P. J.
,
1995
, “
Smoothing Monte Carlo Exchange Factors
,”
ASME J. Heat Transfer-Trans. ASME
,
117
, pp.
524
526
.10.1115/1.2822557
10.
Daun
,
K. J.
,
Morton
,
D. P.
, and
Howell
,
J. R.
,
2005
, “
Smoothing Monte Carlo Exchange Factors Through Constrained Maximum Likelihood Estimation
,”
ASME J. Heat Transfer-Trans. ASME
,
127
, pp.
1124
1128
.10.1115/1.2035111
11.
Taylor
,
R. P.
,
Lock
,
R.
,
Hodge
,
B. K.
, and
Steel
,
W. G.
,
1995
, “
Uncertainty Analysis of Diffuse-Grey Radiation Enclosure Problems
,”
J. Thermophys. Heat Transfer
,
9
, pp.
63
69
.10.2514/3.629
You do not currently have access to this content.