Abstract

An extensive numerical analysis is performed on a vertical cylindrical open cavity made of aluminum with varying thicknesses to study conjugate natural convection. The key purpose of this study is to evaluate the effect of cylinder wall thickness on natural convection at the outer wall of the cylinder, which is coupled to the inner cylinder wall that has a constant temperature of 450 K and the ambient air which temperature is 300 K. The Navier–Stokes equations, continuity equation, and energy equations are solved numerically. The finite volume method is applied in the computational domain that includes the vertical cylindrical open cavity by using ansys-fluent 18 to specify the properties of flow and exchange of thermal energy. A couple of pertinent parameters are used for the numerical investigation like Rayleigh number within laminar regime (within range 104–108), aspect ratio (undefined proportion of length to diameter of the cylinder (L/D)) of the vertical cylindrical open cavity (2, 4, 6, 8, 10), and cylinder wall thickness (0, 1, 2, 3, 4 mm). This study presents the velocity vector field and thermal plume contours. An approximate Nusselt number to Rayleigh number equation is developed for the vertical cylindrical cavity within the range of Rayleigh numbers addressed by this work.

References

1.
Chan
,
Y.
, and
Tien
,
C.
,
1985
, “
A Numerical Study of Two-Dimensional Laminar Natural Convection in Shallow Open Cavities
,”
Int. J. Heat Mass Transfer
,
28
(
3
), pp.
603
612
.10.1016/0017-9310(85)90182-6
2.
Dehghan
,
A. A.
, and
Behnia
,
M.
,
1996
, “
Combined Natural Convection–Conduction and Radiation Heat Transfer in a Discretely Heated Open Cavity
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
118
(
1
), pp.
56
64
.10.1115/1.2824068
3.
Chakroun
,
W.
,
Elsayed
,
M. M.
, and
Al-Fahed
,
S. F.
,
1997
, “
Experimental Measurements of Heat Transfer Coefficient in a Partially/Fully Opened Tilted Cavity
,”
ASME. J. Sol. Energy Eng.
,
119
(
4
), pp.
298
303
.10.1115/1.2888036
4.
Prakash
,
M.
,
Kedare
,
S. B.
, and
Nayak
,
J. K.
,
2009
, “
Investigations on Heat Losses From a Solar Cavity Receiver
,”
Sol. Energy
,
83
(
2
), pp.
157
170
.10.1016/j.solener.2008.07.011
5.
Saravanan
,
S.
, and
Vidhya Kumar
,
A. R.
,
2014
, “
Natural Convection in Square Cavity With Heat Generating Baffles
,”
Appl. Math. Comput.
,
244
, pp.
1
9
.10.1016/j.amc.2014.06.092
6.
Wang
,
F.
,
Gao
,
X.
,
Xiao
,
Y.
,
Wu
,
Z.
, and
Jin
,
J.
,
2020
, “
Thick Exchange Layer Evaporation Model With Natural Convection Effect and Evaporation Experimental Study for Multicomponent Droplet
,”
Chin. J. Aeronaut.
,
33
(
7
), pp.
1903
1918
.10.1016/j.cja.2020.02.005
7.
Chang
,
K. S.
,
Won
,
Y. H.
, and
Cho
,
C. H.
,
1983
, “
Patterns of Natural Convection Around a Square Cylinder Placed Concentrically in a Horizontal Circular Cylinder
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
105
(
2
), pp.
273
280
.10.1115/1.3245574
8.
Tetsu
,
F.
,
Shigeru
,
K.
, and
Buenconsejo
,
N. S.
,
1988
, “
Laminar Free Convection Flow Rate in a Vertical Tube
,”
Int. J. Heat Mass Transfer
,
31
(
4
), pp.
831
841
.10.1016/0017-9310(88)90140-8
9.
Wang
,
T.-Y.
, and
Kleinstreuer
,
C.
,
1989
, “
General Analysis of Steady Laminar Mixed Convection Heat Transfer on Vertical Slender Cylinders
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
111
(
2
), pp.
393
398
.10.1115/1.3250690
10.
Balaji
,
C.
, and
Venkateshan
,
S.
,
1993
, “
Interaction of Surface Radiation With Free Convection in a Square Cavity
,”
Int. J. Heat Fluid Flow
,
14
(
3
), pp.
260
267
.10.1016/0142-727X(93)90057-T
11.
Fu
,
W.-S.
,
Cheng
,
C.-S.
, and
Shieh
,
W.-J.
,
1994
, “
Enhancement of Natural Convection Heat Transfer of an Enclosure by a Rotating Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
37
(
13
), pp.
1885
1897
.10.1016/0017-9310(94)90329-8
12.
Boudebous
,
Z. NA. H.
, and
Meniai
,
S.
,
2001
, “
Numerical Study of Developing Natural Laminar Convection in a Vertical Hyperbolic Duct of a Fixed Length and With a Constant Wall Temperature
,”
Numer. Heat Transfer, Part A: Appl.
,
40
(
7
), pp.
783
800
.10.1080/104077801753289855
13.
Yovanovich
,
M.
,
Teertstra
,
P.
, and
Muzychka
,
Y.
,
2002
, “
Natural Convection Inside Vertical Isothermal Ducts of Constant Arbitrary Cross Section
,”
J. Thermophys. Heat Transfer
,
16
(
1
), pp.
116
121
.10.2514/2.6660
14.
Fu
,
W.-S.
, and
Tong
,
B.-H.
,
2002
, “
Numerical Investigation of Heat Transfer From a Heated Oscillating Cylinder in a Cross Flow
,”
Int. J. Heat Mass Transfer
,
45
(
14
), pp.
3033
3043
.10.1016/S0017-9310(02)00016-9
15.
Kimura
,
F.
,
Tachibana
,
T.
,
Kitamura
,
K.
, and
Hosokawa
,
T.
,
2004
, “
Fluid Flow and Heat Transfer of Natural Convection Around Heated Vertical Cylinders (Effect of Cylinder Diameter)
,”
JSME Int. J. Ser. B
,
47
(
2
), pp.
156
161
.10.1299/jsmeb.47.156
16.
Kumar De
,
A.
, and
Dalal
,
A.
,
2006
, “
A Numerical Study of Natural Convection Around a Square, Horizontal, Heated Cylinder Placed in an Enclosure
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4608
4623
.10.1016/j.ijheatmasstransfer.2006.04.020
17.
Roy
,
S.
, and
Anilkumar
,
D.
,
2006
, “
Unsteady Mixed Convection From a Moving Vertical Slender Cylinder
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
128
(
4
), pp.
368
373
.10.1115/1.2165206
18.
Mohammed
,
H. A.
, and
Salman
,
Y. K.
,
2007
, “
Combined Natural and Forced Convection Heat Transfer for Assisting Thermally Developing Flow in a Uniformly Heated Vertical Circular Cylinder
,”
Int. Commun. Heat Mass Transfer
,
34
(
4
), pp.
474
491
.10.1016/j.icheatmasstransfer.2007.01.001
19.
Kang
,
G.-U.
, and
Chung
,
B.-J.
,
2010
, “
The Experimental Study on Transition Criteria of Natural Convection Inside a Vertical Pipe
,”
Int. Commun. Heat Mass Transfer
,
37
(
8
), pp.
1057
1063
.10.1016/j.icheatmasstransfer.2010.06.016
20.
Hussain
,
S. H.
, and
Hussein
,
A. K.
,
2011
, “
Mixed Convection Heat Transfer in a Differentially Heated Square Enclosure With a Conductive Rotating Circular Cylinder at Different Vertical Locations
,”
Int. Commun. Heat Mass Transfer
,
38
(
2
), pp.
263
274
.10.1016/j.icheatmasstransfer.2010.12.006
21.
Gonzalez-Hidalgo
,
C.
,
Herrero
,
J.
, and
Puigjaner
,
D.
,
2012
, “
Mixing Intensification by Natural Convection With Application to a Chemical Reactor Design
,”
Chem. Eng. J.
,
200–202
, pp.
506
520
.10.1016/j.cej.2012.06.102
22.
Choi
,
S.
, and
Kim
,
S. J.
,
2017
, “
Effect of Initial Cooling on Heat and Mass Transfer at the Cryogenic Surface Under Natural Convective Condition
,”
Int. J. Heat Mass Transfer
,
112
, pp.
850
861
.10.1016/j.ijheatmasstransfer.2017.05.033
23.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2016
, “
Numerical Investigation of Natural Convection Heat Transfer Over Annular Finned Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
96
, pp.
330
345
.10.1016/j.ijheatmasstransfer.2016.01.024
24.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2017
, “
Numerical Investigation of Natural Convection Heat Transfer From Vertical Cylinder With Annular Fins
,”
Int. J. Therm. Sci.
,
111
, pp.
146
159
.10.1016/j.ijthermalsci.2016.08.019
25.
Acharya
,
S.
,
Agrawal
,
S.
, and
Dash
,
S. K.
,
2018
, “
Numerical Analysis of Natural Convection Heat Transfer From a Vertical Hollow Cylinder Suspended in Air
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
5
), p.
052501
.10.1115/1.4038478
26.
Chandrakar
,
V.
,
Senapati
,
J. R.
, and
Mohanty
,
A.
,
2021
, “
Conjugate Heat Transfer Due to Conduction, Natural Convection, and Radiation From a Vertical Hollow Cylinder With Finite Thickness
,”
Numer. Heat Transfer, Part A
,
79
(
6
), pp.
463
487
.10.1080/10407782.2020.1847524
27.
Rana
,
B. K.
,
Singh
,
B.
, and
Senapati
,
J. R.
,
2020
, “
Thermofluid Characteristics on Natural and Mixed Convection Heat Transfer From a Vertical Rotating Hollow Cylinder Immersed in Air: A Numerical Exercise
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
2
), p.
022601
.10.1115/1.4048830
28.
Mohamad
,
S.
,
Senapati
,
J. R.
,
Rout
,
S. K.
, and
Sarangi
,
S. K.
,
2021
, “
Development of Nusselt Number Correlation in Natural Convection Over the Walls of a Blast Furnace: A CFD Approach
,”
Proc. Inst. Mech. Eng., Part E
, epub.10.1177/09544089211063734
29.
Mohamad
,
S.
,
Rout
,
S. K.
,
Senapati
,
J. R.
, and
Sarangi
, and
S. K.
,
2022
, “
Entropy Generation Analysis and Cooling Time Estimation of a Blast Furnace in Natural Convection Environment
,”
Numer. Heat Transfer, Part A
,
82
(
10
), pp.
666
681
.10.1080/10407782.2022.2083861
30.
McAdams
,
W. H.
,
1954
,
Heat Transmission
, 3rd ed.,
McGraw-Hill
,
New York
.
31.
Churchill
,
S. W.
,
1977
, “
A Comprehensive Correlating Equation for Laminar, Assisting, Forced and Free Convection
,”
AIChE J.
,
23
(
1
), pp.
10
16
.10.1002/aic.690230103
You do not currently have access to this content.