Abstract

The present investigation focuses on studying the conjugate heat transfer behavior for a turbulent offset jet flow over a heated plate moving uniformly in a positive axial direction. Heat transfer from heated walls to flowing fluids is a subject of great scientific interest and practical importance due to many industrial applications like cooling hot rolling sheets and slabs, cooling continuous casting, etc. The conjugate technique adopted in the present investigation requires consideration of conduction in the solid and the convection from the solid surface to the fluid. For the simulation, a low-Re modified kε model developed by Yang and Shih (YS model) is adopted. The YS turbulence model uses the integration-to-wall (ITW) technique which enables it to interpret the variations in fluid and thermal parameters in the near-wall regions without adopting the wall functions. The simulation involves a turbulent offset jet ejecting out of a nozzle at a Reynolds number of 15000, submerged into a stationary environment of Prandtl number 7. The plate at its bottom is heated by constant flux. The various parameters taken into account for observing the thermal behavior are offset ratios (OR=3,7,and11), plate velocity ratios (Up=0,0.5,1.0,1.5,and2), plate thickness ratios (S=0.5,1.0,and1.5), and conductivity ratios (K=500,1000,1500,and2000). The temperature distribution diagrams reveal the effect of the parameters mentioned above. The interface temperatures and the Nusselt number suggest better cooling can be achieved at lower offset ratio cases for low-velocity ratios. The contour diagrams and variation of average and local Nusselt numbers suggest the dominating effect of plate motion. A more effective cooling rate is achieved at higher plate velocity, irrespective of the offset ratios.

References

1.
York
,
W. D.
, and
Leylek
,
J. H.
,
2003
, “
Three-Dimensional Conjugate Heat Transfer Simulation of an Internally Cooled Gas Turbine Vane
,”
ASME
Paper No. GT2003-38551.10.1115/GT2003-38551
2.
Casanova
,
J. O.
,
Canet
,
M. J.
, and
Rosales
,
F. J. G.
,
2019
, “
Numerical Study of the Heat and Momentum Transfer Between a Flat Plate and an Impinging Jet of Power-Law Fluids
,”
Int. J. Heat Mass Transfer
,
141
, pp.
102
111
.10.1016/j.ijheatmasstransfer.2019.06.072
3.
Shah
,
S.
,
2021
, “
Numerical Analysis of Heat Transfer Between Multiple Jets and Flat Moving Surface
,”
Int. J. Heat Mass Transfer
,
171
, p.
121088
.10.1016/j.ijheatmasstransfer.2021.121088
4.
Silverman
,
I.
, and
Nagler
,
A.
,
2004
, “
High Heat Flux Cooling With Water Jet Impingement
,”
ASME
Paper No. HT-FED2004-56273.10.1115/HT-FED2004-56273
5.
Mukherjee
,
A.
,
Senapati
,
J. R.
,
Rathore
,
S. K.
, and
Barik
,
A. K.
,
2022
, “
Comparative Assessment of Different Turbulence Models to Estimate Thermo-Fluid Characteristics of an Infrared Suppression (IRS) Device
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
7
), p.
073501
.10.1115/1.4054415
6.
Guan
,
T.
,
Zhang
,
J. Z.
, and
Shan
,
Y.
,
2018
, “
Effect of Offset-Jets Arrangement on Leading Edge Hot-Air Heating Effectiveness of Engine Inlet Guide Strut
,”
Appl. Therm. Eng.
,
128
, pp.
357
372
.10.1016/j.applthermaleng.2017.09.040
7.
Kim
,
D. S.
,
Yoon
,
S. H.
,
Lee
,
D. H.
, and
Kim
,
K. C.
,
1996
, “
Flow and Heat Transfer Measurements of a Wall Attaching Offset Jet
,”
Int. J. Heat Mass Transfer
,
39
(
14
), pp.
2907
2913
.10.1016/0017-9310(95)00383-5
8.
Song
,
H. B.
,
Yoon
,
S. H.
, and
Lee
,
D. H.
,
2000
, “
Flow and Heat Transfer Characteristics of a Two-Dimensional Oblique Wall Attaching Offset Jet
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2395
2404
.10.1016/S0017-9310(99)00312-9
9.
Ajmi
,
M.
,
Hnaien
,
N.
,
Marzouk
,
S.
,
Kolsi
,
L.
,
Ghachem
,
K.
,
Ben Aissia
,
H.
, and
Almeshaal
,
M. A.
,
2020
, “
Numerical Investigation of Heat Transfer Enhancement of an Inclined Heated Offset Jet
,”
Int. J. Commun. Heat Mass Transfer
,
116
, pp. 1–16.10.1016/j.icheatmasstransfer.2020.104682
10.
Shivankar
,
S.
,
Randive
,
P. R.
, and
Pati
,
S.
,
2020
, “
Effects of Undulated Wall on the Hydrodynamic and Thermal Transport Characteristics of Turbulent Jet
,”
Int. J. Therm. Sci.
,
152
, p.
106297
.10.1016/j.ijthermalsci.2020.106297
11.
John
,
B.
,
Senthilkumar
,
P.
, and
Sadasivan
,
S.
,
2019
, “
Applied and Theoretical Aspects of Conjugate Heat Transfer Analysis: A Review
,”
Arch. Comput. Methods Eng.
,
26
(
2
), pp.
475
489
.10.1007/s11831-018-9252-9
12.
Yu
,
W. S.
, and
Lin
,
H. T.
,
1993
, “
Conjugate Problems of Conduction and Free Convection on Vertical and Horizontal Flat Plates
,”
Int. J. Heat Mass Transfer
,
36
(
5
), pp.
1303
1313
.10.1016/S0017-9310(05)80099-7
13.
Sunden
,
B.
,
1980
, “
Conjugated Heat Transfer From Circular Cylinders in Low Reynolds Number Flow
,”
Int. J. Heat Mass Transfer
,
23
, pp.
1359
1367
.10.1016/0017-9310(80)90210-0
14.
Zhao
,
Y.
,
Masuoka
,
T.
,
Tsuruta
,
T.
, and
Ma
,
C. F.
,
2002
, “
Conjugated Heat Transfer on a Horizontal Surface Impinged by Circular Free-Surface Liquid Jet
,”
JSME Int. J. Ser. B
,
45
(
2
), pp.
307
314
.10.1299/jsmeb.45.307
15.
Panda
,
R. K.
,
Sreekala
,
P.
, and
Prasad
,
B. V. S. S. S.
,
2010
, “
Computational and Experimental Study of Conjugate Heat Transfer From a Flat Plate With Shower Head Impinging Jets
,”
IHTC14, Proceedings of the 14th Int. Heat Transfer Conf.
,
Washington DC
, pp.
1
10
.
16.
Bula
,
A. J.
,
Rahman
,
M. M.
, and
Leland
,
J. E.
,
2000
, “
Numerical Modeling of Conjugate Heat Transfer During Impingement of Free Liquid Jet Issuing
,”
Numer. Heat Transfer, Part A
,
38
(
1
), pp.
45
66
.10.1080/10407780050134965
17.
Zhu
,
X. W.
,
Zhu
,
L.
, and
Zhao
,
J. Q.
,
2017
, “
An in-Depth Analysis of Conjugate Heat Transfer Process of Impingement Jet
,”
Int. J. Heat Mass Transfer
,
104
(
2017
), pp.
1259
1267
.10.1016/j.ijheatmasstransfer.2016.09.075
18.
Chen
,
S.-J.
,
Kothari
,
J.
, and
Tseng
,
A. A.
,
1991
, “
Cooling of a Moving Plate With an Impinging Circular Water Jet
,”
Exp. Therm. Fluid Sci.
,
4
(
3
), pp.
343
353
.10.1016/0894-1777(91)90051-R
19.
Lallave
,
J. C.
,
Rahman
,
M. M.
, and
Kumar
,
A.
,
2007
, “
Numerical Analysis of Heat Transfer on a Rotating Disk Surface Under Confined Liquid Jet Impingement
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
720
734
.10.1016/j.ijheatfluidflow.2006.09.005
20.
Achari
,
A. M.
, and
Das
,
M. K.
,
2017
, “
Conjugate Heat Transfer Study of a Turbulent Slot Jet Impinging on a Moving Plate
,”
Heat Mass Transfer
,
53
(
3
), pp.
1017
1035
.10.1007/s00231-016-1873-7
21.
Benmouhoub
,
D.
, and
Mataoui
,
A.
,
2014
, “
Computation of Heat Transfer of a Plane Turbulent Jet Impinging a Moving Plate
,”
Therm. Sci.
,
18
(
4
), pp.
1259
1271
.10.2298/TSCI111027101B
22.
Behera
,
V. M.
, and
Rathore
,
S. K.
,
2021
, “
Numerical Investigation of Turbulent Offset Jet Flow Over a Moving Flat Plate Using low-Reynolds Number Turbulence Model
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
, pp.
1
15
.10.1115/1.4049751
23.
Behera
,
V. M.
, and
Rathore
,
S. K.
,
2021
, “
Numerical Study on Turbulent Characteristics of Wall Jet in a Quiescent Environment Over a Plate in Motion
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
1146
(
1
), pp. 1–9.
012019
-
8
.10.1088/1757-899X/1146/1/012019
24.
Yang
,
Z.
, and
Shih
,
T.
,
1993
, “
A New Time Scale Based k-ϵ Model for Near Wall Turbulence
,” NASA Tech. Memorandum, pp.
1
24
.
25.
Rathore
,
S. K.
, and
Das
,
M. K.
,
2015
, “
A Comparative Study of Heat Transfer Characteristics of Wall-Bounded Jets Using Different Turbulence Models
,”
Int. J. Therm. Sci.
,
89
(
2015
), pp.
337
356
.10.1016/j.ijthermalsci.2014.11.019
26.
El-Gabry
,
L. A.
, and
Kaminski
,
D. A.
,
2005
, “
Numerical Investigation of Jet Impingement With Cross flow–Comparison of Yang-Shih and Standard k-ϵ Turbulence Models
,”
Num. Heat Transfer; Part A: Appl.
,
47
(
5
), pp.
441
469
.10.1080/10407780590891254
27.
Yang
,
Y. T.
, and
Tsai
,
S. Y.
,
2007
, “
Numerical Study of Transient Conjugate Heat Transfer of a Turbulent Impinging Jet
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
799
807
.10.1016/j.ijheatmasstransfer.2006.08.022
28.
Biswas
,
G.
, and
Eswaran
,
V.
,
2002
,
Turbulent Flows: Fundamentals, Experiments and Modeling, IIT Kanpur Series of Advanced Texts
,
Alpha Science International Ltd
,
Pangbourne, UK
.
29.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
New York
.
30.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T. J.
,
1997
, “
Turbulence Modeling Validation, Testing and Development
,” Tech. Rep., NASA Technical Memorandum 110446,
Ames Research Center
,
CA
, pp.
1
100
.
31.
Versteeg
,
H.
, and
Malalasekera
,
W.
,
2005
,
An Introduction to Parallel Computational Fluid Dynamics
,
6
,
Pearson Prentice Hall
,
Harlow, UK
.
32.
Behera
,
V. M.
, and
Rathore
,
S. K.
,
2022
, “
The Effect of Plate Motion on Heat Transfer Enhancement Using Turbulent Offset Jet Flow: A Conjugate Approach
,”
Int. J. Commun. Heat Mass Transfer
,
136
, pp. 1–14.
106173
.10.1016/j.icheatmasstransfer.2022.106173
33.
Pelfrey
,
J. R.
, and
Liburdy
,
J. A.
,
1986
, “
Mean Flow Characteristics of a Turbulent Offset Jet
,”
ASME J. Fluids Eng.
,
108
(
1
), pp.
82
88
.10.1115/1.3242548
34.
Eriksson
,
J. G.
,
Karlsson
,
R. I.
, and
Persson
,
J.
,
1998
, “
An Experimental Study of a Two-Dimensional Plane Turbulent Wall Jet
,”
Exp. Fluids
,
25
(
1
), pp.
50
60
.10.1007/s003480050207
35.
Vishnuvardhanarao
,
E.
, and
Das
,
M. K.
,
2007
, “
Study of Conjugate Heat Transfer From a Flat Plate by Turbulent Offset Jet Flow
,”
Numer. Heat Transfer, Part A
,
53
(
5
), pp.
524
542
.10.1080/10407780701678331
36.
Incropera
,
F. P.
,
Dewitt
,
T. L.
,
Bergman
,
D. P.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed., John
Wiley & Sons
, Hoboken, NJ.
37.
Crittenden
,
J. C.
,
Trussell
,
R. R.
,
Hand
,
D. W.
,
Howe
,
K. J.
, and
Tchobanoglous
,
G.
,
2012
,
MWH's Water Treatment: Principles and Design
, 3rd ed., John
Wiley & Sons, Inc.
, Hoboken, NJ, pp.
1861
1862
.
38.
Nag
,
P. K.
,
2007
,
Heat and Mass Transfer
, 2nd ed.,
Tata McGraw-Hill
,
New Delhi, India
, pp.
810
824
.
You do not currently have access to this content.