Abstract

The large-scale applicability of the micro- and nanofluidic devices demands continuous technological advancements in the transport mechanisms, especially to promptly mix the analytes and reagents at such a small scale. To this end, thermocapillarity-induced Marangoni hydrodynamics of three-layered, immiscible fluid streams in a microchannel is analytically explored. The system is exposed to periodic and sinusoidal thermal stimuli, and a theoretical framework is presented. The diffusion of the periodic thermal stimuli across and along the fluidic interfaces creates axial surface tension gradients, which induce vortical motion of the participating fluids within the microconduit. We show that depending on the physical parameters of the three participating fluids, such vortex patterns may be fine-tuned and controlled to obtain desired transport behavior. An analytical solution for the thermal and the hydrodynamic transport phenomena is obtained by solving the momentum and energy conservation equations under the umbrella of creeping flow characteristics (very low Reynolds and thermal Marangoni numbers), and nearly undeformed fluid interfaces (negligibly small Capillary number). The approximate profiles of the deformed interfaces are also quantified theoretically to justify the assumption of flat and undeformed interfaces. The independent influence of crucial thermophysical properties, the microchannel system parameters, and features of the applied thermal stimuli are shown in detail for a fixed combination of other parameters.

References

1.
Birikh
,
R. V.
,
1966
, “
Thermocapillary Convection in a Horizontal Layer of Liquid
,”
J. Appl. Mech. Tech. Phys.
,
7
, pp.
43
44
.10.1007/BF00914697
2.
Young
,
N. O.
,
Goldstein
,
J. S.
, and
Block
,
M. J.
,
1959
, “
The Motion of Bubble in a Vertical Temperature Gradient
,”
J. Fluid Mech.
,
6
(
3
), pp.
350
356
.10.1017/S0022112059000684
3.
Larkin
,
B. K.
,
1970
, “
Thermocapillary Flow Around Hemispherical Bubble
,”
AICHE J.
,
16
(
1
), pp.
101
107
.10.1002/aic.690160120
4.
Anand
,
J. N.
,
1969
, “
Surface Deformation of Thin Coatings Caused by Evaporative Convection: II. Thermocapillary Flow
,”
J. Colloid Interface Sci.
,
31
(
2
), pp.
203
207
.10.1016/0021-9797(69)90327-0
5.
Babskii
,
V. G.
, and
Sklovskaya
,
I. L.
,
1969
, “
Hydrodynamics in Weak Force Fields Onset of Steady Thermocapillary Convection in a Spherical Fluid Layer Under Zero g-Condition
,”
Fluid Dyn.
,
4
, pp.
62
66
.10.1007/BF01025142
6.
Karbalaei
,
A.
,
Kumar
,
R.
, and
Cho
,
H. J.
,
2016
, “
Themocapillarity in Microfluidics-A Review
,”
Micromachines
,
7
(
1
), p.
13
.10.3390/mi7010013
7.
Jaiswal
,
V.
,
Harikrishnan
,
A. R.
,
Khurana
,
G.
, and
Dhar
,
P.
,
2018
, “
Ionic Solubility and Solutal Advection Governed Augmented Evaporation Kinetics of Salt Solution Pendant Droplets
,”
Phys. Fluids
,
30
, p.
012113
.10.1063/1.5013356
8.
Kaushal
,
A.
,
Jaiswal
,
V.
,
Mehandia
,
V.
, and
Dhar
,
P.
,
2020
, “
Soluto-Thermo-Hydrodynamics Influenced Evaporation Kinetics of Saline Sessile Droplets
,”
Eur. J. Mech. B/Fluids
,
83
, pp.
130
140
.10.1016/j.euromechflu.2020.04.014
9.
Dhar
,
P.
,
Dwivedi
,
R. K.
, and
Harikrishnan
,
A. R.
,
2020
, “
Surface Declination Governed Asymmetric Sessile Droplet Evaporation
,”
Phys. Fluids
,
32
, p.
112010
.10.1063/5.0025644
10.
Grutzmacher
,
P. G.
,
Jalikop
,
S. V.
,
Gachot
,
C.
, and
Rosenkranz
,
A.
,
2021
, “
Thermocapillary Lubricant Migration on Textured Surfaces - A Review of Theoretical and Experimental Insights
,”
Surf. Topogr. Metrol. Prop.
,
9
, p.
013001
.10.1088/2051-672X/abd07c
11.
Zhao
,
J. F.
,
Li
,
Z. D.
,
Li
,
H. X.
, and
Li
,
J.
,
2010
, “
Thermocapillary Migration of Deformable Bubbles at Moderate to Large Marangoni Number in Microgravity
,”
Microgravity Sci. Technol.
,
22
, pp.
295
303
.10.1007/s12217-010-9193-x
12.
Alhendal
,
Y.
,
Turan
,
A.
, and
Hollingsworth
,
P.
,
2013
, “
Thermocapillary Simulation of Single Bubble Dynamics in Zero Gravity
,”
Acta Astronaut.
,
88
, pp.
108
115
.10.1016/j.actaastro.2013.03.017
13.
Alhendal
,
Y.
,
Turan
,
A.
,
Kalendar
,
A.
,
Ziyan
,
H. A.
, and
Shiaty
,
R. E.
,
2018
, “
Thermocapillary Bubble Migration at High Reynolds and Marangoni Numbers: 3D Numerical Study
,”
Microgravity-Sci. Technol.
,
30
, pp.
561
569
.10.1007/s12217-018-9643-4
14.
Selva
,
B.
,
Cantat
,
I.
, and
Jullien
,
M. C.
,
2011
, “
Temperature-Induced Migration of a Bubble in a Soft Microcavity
,”
Phys. Fluids
,
23
, p.
052002
.10.1063/1.3590743
15.
Sun
,
R.
, and
Hu
,
W. R.
,
2002
, “
The Thermocapillary Migrations of Two Bubbles in Microgravity Environment
,”
J. Colloid Interface Sci.
,
255
(
2
), pp.
375
381
.10.1006/jcis.2002.8618
16.
Sun
,
R.
, and
Hu
,
W. R.
,
2003
, “
Planar Thermocapillary Migration of Two Bubbles in Microgravity Environment
,”
Phys. Fluids
,
15
, p.
3015
.10.1063/1.1607326
17.
Jiao
,
Z.
,
Huang
,
X.
,
Nguyen
,
N. T.
, and
Abgrall
,
P.
,
2008
, “
Thermocapillary Actuation of Droplet in a Planar Microchannel
,”
Microfluid. Nanofluid.
,
5
, pp.
205
214
.10.1007/s10404-007-0235-7
18.
Yin
,
Z.
,
Gao
,
P.
,
Hu
,
W.
, and
Chang
,
L.
,
2008
, “
Thermocapillary Migration of Nondeformable Drops
,”
Phys. Fluids
,
20
, p.
082101
.10.1063/1.2965549
19.
Greco
,
E. F.
, and
Grigoriev
,
R. O.
,
2009
, “
Thermocapillary Migration of Interfacial Droplets
,”
Phys. Fluids
,
21
, p.
042105
.10.1063/1.3112777
20.
Fath
,
A.
, and
Bothe
,
D.
,
2015
, “
Direct Numerical Simulations of Thermocapillary Migration of a Droplet Attached to a Solid Wall
,”
Int. J. Multiphase Flow
,
77
, pp.
209
221
.10.1016/j.ijmultiphaseflow.2015.08.018
21.
Sharanya
,
V.
, and
Sekhar
,
G. P. R.
,
2015
, “
Thermocapillary Migration of a Spherical Drop in an Arbitrary Transient Stokes Flow
,”
Phys. Fluids
,
27
, p.
063104
.10.1063/1.4922597
22.
Nguyen
,
V. T.
,
Vu
,
T. V.
,
Nguyen
,
P. H.
,
Ho
,
N. X.
,
Pham
,
B. D.
,
Nguyen
,
H. D.
, and
Vu
,
H. V.
,
2021
, “
Thermocapillary Migration of a Fluid Compound Droplet
,”
J. Mech. Sci. Technol.
,
35
, pp.
4033
4044
.10.1007/s12206-021-0816-5
23.
Kaushal
,
A.
,
Jaiswal
,
V.
,
Mehandia
,
V.
, and
Dhar
,
P.
,
2022
, “
Competing Thermal and Solutal Advection Decelerates Droplet Evaporation on Heated Surfaces
,”
Eur. J. Mech. B/Fluids
,
91
, pp.
129
140
.10.1016/j.euromechflu.2021.10.003
24.
Harikrishnan
,
A. R.
,
Dhar
,
P.
,
Gedupudi
,
S.
, and
Das
,
S. K.
,
2018
, “
Oscillatory Solutothermal Convection-Driven Evaporation Kinetics in Colloidal Nanoparticle-Surfactant Complex Fluid Pendant Droplets
,”
Phys. Rev. Fluids
,
3
, p.
073604
.10.1103/PhysRevFluids.3.073604
25.
Hodes
,
M.
,
Kirk
,
T.
,
Karamanis
,
G.
,
Lam
,
L.
,
MacLachlan
,
S.
, and
Papageorgiou
,
D.
,
2015
, “
Conformal Map and Asymptotic Solutions for Apparent Slip Lengths in the Presence of Thermocapillary Stress
,”
23rd National Heat and Mass Transfer Conference and 1st International ISHMT-ASTFE Heat and Mass Transfer Conference
,
Thiruvananthapuram, India
,
Dec. 17–20
, pp.
17
20
.https://www.researchgate.net/publication/282295523_CONFORMAL_MAP_AND_ASYMPTOTIC_SOLUTIONS_FOR_APPARENT_SLIP_LENGTHS_IN_THE_PRESENCE_OF_THERMOCAPILLARY_STRESS
26.
Pendse
,
B.
, and
Esmaeeli
,
A.
,
2010
, “
An Analytical Solution for Thermocapillary-Driven Convection of Superimposed Fluids at Zero Reynolds and Marangoni Numbers
,”
Int. J. Therm. Sci.
,
49
, pp.
1147
1155
.10.1016/j.ijthermalsci.2010.02.003
27.
Agrawal
,
S.
,
Das
,
P. K.
, and
Dhar
,
P.
,
2022
, “
Thermo-Capillarity in Microfluidic Binary Systems Via Phase Modulated Sinusoidal Thermal Stimuli
,”
Phys. Fluids
,
34
, p.
032012
.10.1063/5.0084216
28.
Efinova
,
M. V.
,
2019
, “
The Effect of Interfacial Heat Transfer Energy on a Two-Layer Creeping Flow in a Flat Channel
,”
J. Phys. Conf. Ser.
,
1268
, p.
012022
.10.1088/1742-6596/1268/1/012022
29.
Liu
,
Q. S.
, and
Roux
,
B.
,
1998
, “
Thermocapillary Convection in Two-Layer Systems
,”
Int. J. Heat Mass Transfer
,
41
, pp.
1499
1511
.10.1016/S0017-9310(97)00277-9
30.
Binghong
,
Z.
,
Qiushen
,
L.
,
Liang
,
H. U.
,
Yonglong
,
Y.
, and
Wenrui
,
H. U.
,
2001
, “
Space Experiments of Thermocapillary Convection in Two-Liquid Layers
,”
Sci. China
,
45
, pp.
552
560
.
31.
Georis
,
P.
,
Hennenberg
,
M.
,
Lebon
,
G.
, and
Legros
,
J. C.
,
1999
, “
Investigation of Thermocapillary Convection in a Three-Liquid-Layer System
,”
J. Fluid Mech.
,
389
, pp.
209
228
.10.1017/S0022112099004930
32.
Engineering ToolBox
,
2018
, “
Ethanol - Thermophysical Properties
,” accessed Feb. 7, 2023, https://www.engineeringtoolbox.com/ethanol-ethyl-alcohol-properties-C2H6O-d_2027.html
33.
Garcia Rojas
,
E. E.
,
2013
, “
Thermophysical Properties of Cotton, Canola, Sunflower, and Soybean Oils as Function of Temperature
,”
Int. J. Food Prop.
,
16
(
7
), pp.
1620
1629
.10.1080/10942912.2011.604889
34.
Wiley
,
2021
, “
Wiley Online Library
,”
Wiley
,
Hoboken, NJ
.
35.
Sankaran
,
A.
, and
Yarin
,
A. L.
,
2018
, “
Evaporation-Driven Thermocapillary Marangoni Convection in Liquid Layers of Different Depths
,”
Int. J. Heat Mass Transfer
,
122
, pp.
504
514
.10.1016/j.ijheatmasstransfer.2018.01.136
36.
Ghosh
,
S.
,
Biswas
,
A.
,
Roy
,
B.
, and
Banerjee
,
A.
,
2019
, “
Self-Assembly and Complex Manipulation of Colloidal Mesoscopic Particles by Active Thermocapillary Stress
,”
Soft Matter
,
15
(
23
), pp.
4703
4713
.10.1039/C9SM00721K
37.
Kreyszig
,
E.
,
Kreyszig
,
H.
, and
Norminton
,
E.
,
2011
,
Advanced Engineering Mathematics
, 10th ed.,
Wiley
,
Hoboken, NJ
.
38.
Kou
,
H.
,
Li
,
W.
,
Zhang
,
X.
,
Xu
,
N.
,
Zhang
,
X.
,
Shao
,
J.
,
Ma
,
J.
,
Deng
,
Y.
, and
Li
,
Y.
,
2019
, “
Temperature-Dependent Coefficient of Surface Tension Prediction Model Without Arbitrary Parameters
,”
Fluid Phase Equilib.
,
484
, pp.
53
59
.10.1016/j.fluid.2018.11.024
You do not currently have access to this content.