Abstract

Boiling heat transfer results from a number of multiscale phenomena that are activated by the inception of a nucleating bubble that induces motion of the liquid and vapor phases. Heat is transferred by conduction and convection to the liquid from the heated surface, and subsequently by evaporation at different liquid–vapor interfaces. Nanoscale features on the surface lead to boiling heat transfer enhancement by influencing the surface morphology, nucleation characteristics, localized heat transfer processes, motion of the three-phase contact line, growth and departure of the bubble, and liquid flow over the heated surface. This paper discusses the intrinsic mechanisms associated with nanoscale features that are responsible for enhancement in critical heat flux (CHF) and heat transfer coefficient (HTC) in pool boiling. High wettability surfaces provide CHF enhancement through improved bubble dynamics. Improved contact line motion and liquid circulation around a bubble are responsible for enhanced bubble growth rate. High wickability of nanostructures or nanoparticles on the heated surface is able to supply liquid to the evaporating thin film underneath a bubble. Other techniques lead to enhancing heat transfer to liquid through roughness and lateral conduction in high thermal conductivity particles such as graphene and carbon nanotubes. Enhancement in contact line region heat transfer has been effectively utilized at both nano-and microscales. However, for refrigerants, the enhancement with nanoscale features is only modest at best in improving the heat transfer. These mechanisms are discussed in detail and areas for future research are identified.

References

1.
Kandlikar
,
S. G.
,
2019
, “
A New Perspective on Heat Transfer Mechanisms and Sonic Limit in Pool Boiling
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
5
), p.
051501
.10.1115/1.4042702
2.
Lu
,
Y.-W.
, and
Kandlikar
,
S. G.
,
2011
, “
Nanoscale Surface Modification Techniques for Pool Boiling Enhancement—a Critical Review and Future Directions
,”
Heat Transfer Eng.
,
32
(
10
), pp.
827
842
.10.1080/01457632.2011.548267
3.
Kim
,
D. E.
,
Yu
,
D. I.
,
Jerng
,
D. W.
,
Kim
,
M. H.
, and
Ahn
,
H. S.
,
2015
, “
Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces
,”
Exp. Therm. Fluid Sci.
,
66
, pp.
173
196
.10.1016/j.expthermflusci.2015.03.023
4.
Shojaeian
,
M.
, and
Koşar
,
A.
,
2015
, “
Pool Boiling and Flow Boiling on Micro- and Nanostructured Surfaces
,”
Exp. Therm. Fluid Sci.
,
63
, pp.
45
73
.10.1016/j.expthermflusci.2014.12.016
5.
Mori
,
S.
, and
Utaka
,
Y.
,
2017
, “
Critical Heat Flux Enhancement by Surface Modification in a Saturated Pool Boiling: A Review
,”
Int. J. Heat Mass Transfer
,
108
(
Part B
), pp.
2534
2557
.10.1016/j.ijheatmasstransfer.2017.01.090
6.
Li
,
W.
,
Dai
,
R.
,
Zeng
,
M.
, and
Wang
,
Q.
,
2020
, “
Review of Two Types of Surface Modification on Pool Boiling Enhancement: Passive and Active
,”
Renewable Sustainable Energy Rev.
,
130
, p.
109926
.10.1016/j.rser.2020.109926
7.
Dedov
,
A. V.
,
2019
, “
A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer
,”
Therm. Eng.
,
66
(
12
), pp.
881
915
.10.1134/S0040601519120012
8.
Liang
,
G.
, and
Mudawar
,
I.
,
2019
, “
Review of Pool Boiling Enhancement by Surface Modification
,”
Int. J. Heat Mass Transfer
,
128
, pp.
892
933
.10.1016/j.ijheatmasstransfer.2018.09.026
9.
Mehralizadeh
,
A.
,
Shabanian
,
S. R.
, and
Bakeri
,
G.
,
2020
, “
Effect of Modified Surfaces on Bubble Dynamics and Pool Boiling Heat Transfer Enhancement: A Review
,”
Therm. Sci. Eng. Prog.
,
15
, p.
100451
.10.1016/j.tsep.2019.100451
10.
Li
,
X.
,
Cole
,
I.
, and
Tu
,
J.
,
2019
, “
A Review of Nucleate Boiling on Nanoengineered Surfaces – the Nanostructures, Phenomena and Mechanisms
,”
Int. J. Heat Mass Transfer
,
141
, pp.
20
33
.10.1016/j.ijheatmasstransfer.2019.06.069
11.
Singh
,
S. K.
, and
Sharma
,
D.
,
2021
, “
Review of Pool and Flow Boiling Heat Transfer Enhancement Through Surface Modification
,”
Int. J. Heat Mass Transfer
,
181
, p.
122020
.10.1016/j.ijheatmasstransfer.2021.122020
12.
Sajjad
,
U.
,
Sadeghianjahromi
,
A.
,
Ali
,
H. M.
, and
Wang
,
C.-C.
,
2020
, “
Enhanced Pool Boiling of Dielectric and Highly Wetting Liquids - a Review on Enhancement Mechanisms
,”
Int. Commun. Heat Mass Transfer
,
119
, p.
104950
.10.1016/j.icheatmasstransfer.2020.104950
13.
Chen
,
J.
,
Ahmad
,
S.
,
Cai
,
J.
,
Liu
,
H.
,
Lau
,
K. T.
, and
Zhao
,
J.
,
2021
, “
Latest Progress on Nanotechnology Aided Boiling Heat Transfer Enhancement: A Review
,”
Energy
,
215
(
Part A
), p.
119114
.10.1016/j.energy.2020.119114
14.
Mahmoud
,
M. M.
, and
Karayiannis
,
T. G.
,
2021
, “
Pool Boiling Review: Part II – Heat Transfer Enhancement
,”
Therm. Sci. Eng. Prog.
,
25
, p.
101023
.10.1016/j.tsep.2021.101023
15.
Khan
,
S. A.
,
Atieh
,
M. A.
, and
Koç
,
A.
,
2018
, “
Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review
,”
Energies
,
11
(
11
), p.
3189
.10.3390/en11113189
16.
Yuan
,
X.
,
Du
,
Y.
, and
Su
,
J.
,
2022
, “
Approaches and Potentials for Pool Boiling Enhancement With Superhigh Heat Flux on Responsive Smart Surfaces: A Critical Review
,”
Renewable Sustainable Energy Rev.
,
156
(
2022
), p.
111974
.10.1016/j.rser.2021.111974
17.
Kandlikar
,
S. G.
,
2022
, “
Microscale to Macroscale—Extending Microscale Enhancement Techniques to Large-Scale Boiling Equipment
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
5
), p.
050802
.10.1115/1.4053679
18.
Liter
,
S. G.
, and
Kaviany
,
M.
,
2001
, “
Pool-Boiling CHF Enhancement by Modulated Porous-Layer Coating: Theory and Experiment
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4287
4311
.10.1016/S0017-9310(01)00084-9
19.
Wu
,
Z.
, and
Sunden
,
B.
,
2014
, “
On Further Enhancement of Single-Phase and Flow Boiling Heat Transfer in Micro/Minichannels
,”
Renewable Sustainable Energy Rev.
,
40
, pp.
11
27
.10.1016/j.rser.2014.07.171
20.
Sommers
,
A. D.
, and
Yerkes
,
K. L.
,
2013
, “
Using Micro-Structural Surface Features to Enhance the Convective Flow Boiling Heat Transfer of R-134a on Aluminum
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1053
1063
.10.1016/j.ijheatmasstransfer.2013.05.053
21.
Dharaiya
,
V. V.
, and
Kandlikar
,
S. G.
,
2013
, “
A Numerical Study on the Effects of 2D Structured Sinusoidal Elements on Fluid Flow and Heat Transfer at Microscale
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
190
201
.10.1016/j.ijheatmasstransfer.2012.10.004
22.
Kandlikar
,
S. G.
,
2011
,
Devices With an enhanced boiling surface With features directing bubble and liquid flow and methods thereof
, U.S. Patent No. 10,697,629.
23.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2012
, “
Effect of Open Microchannel Geometry on Pool Boiling Enhancement
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1004
1013
.10.1016/j.ijheatmasstransfer.2011.10.010
24.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2016
, “
Pool Boiling Enhancement Through Bubble Induced Convective Liquid Flow in Feeder Microchannels
,”
Appl. Phys. Lett.
,
108
(
4
), p.
041604
.10.1063/1.4941032
25.
Raghupathi
,
P.
, and
Kandlikar
,
S. G.
,
2017
, “
Characterization of Pool Boiling of Seawater and Regulation of Crystallization Fouling by Physical Aberration
,”
Heat Transfer Eng.
,
38
(
14–15
), pp.
1296
1304
.10.1080/01457632.2016.1242963
26.
Kedzierski
,
M. A.
, and
Gong
,
M.
,
2009
, “
Effect of CuO Nanolubricants on R134a Pool Boiling Heat Transfer
,”
Int. J. Refrig.
,
32
(
5
), pp.
791
799
.10.1016/j.ijrefrig.2008.12.007
27.
Alawi
,
O. A.
,
Sidik
,
N. A. C.
, and
Kherbeet
,
A.
,
2016
, “
The Effects of Nanolubricants on Boiling and Two-Phase Flow Phenomena: A Review
,”
Int. Commun. Heat Mass Transfer
,
75
, pp.
197
205
.10.1016/j.icheatmasstransfer.2016.04.001
28.
Raghupathi
,
P.
, and
Kandlikar
,
S. G.
,
2016
, “
Contact Line Region Heat Transfer Mechanisms for an Evaporating Interface
,”
Int. J. Heat Mass Transfer
,
95
, pp.
296
306
.10.1016/j.ijheatmasstransfer.2015.11.047
29.
Fuji
,
M.
,
Araki
,
M.
,
Takei
,
T.
,
Watanabe
,
T.
, and
Chikazawa
,
M.
,
1999
, “
Structure and Wettability of Various Silica Surfaces: Evaluation on the Nano and Macro Levels
,”
J Soc. Powder Technol., Jpn.
,
36
(
7)
, pp.
528
533
;
Translation – KONA Powder Particle J.
,
18
,
2000
.10.4164/sptj.36.528
30.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
,
2003
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3374
3376
.10.1063/1.1619206
31.
Wang
,
C. H.
, and
Dhir
,
V. K.
,
1993
, “
Effect of Surface Wettability of Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
115
(
3
), pp.
659
669
.10.1115/1.2910737
32.
Kutateladze
,
S. S.
,
1952
, “
Heat Transfer in Condensation and Boiling
,”
USAEC, Report No. AEC-TR-3770.
33.
Zuber
,
N.
,
1959
, “
On the Role of Structural Disjoining Pressure and Contact Line Pinning in Critical Heat Flux Enhancement During Boiling of Nanofluids
,” Ph.D. thesis,
UCLA
,
Los Angeles, CA
.
34.
Bang
,
I. C.
, and
Chang
,
S. H.
,
2005
, “
Boiling Heat Transfer Performance and Phenomena of Al2O3–Water Nano-Fluids From a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2407
2419
.10.1016/j.ijheatmasstransfer.2004.12.047
35.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2006
, “
Effects of Nanoparticle Deposition on Surface Wettability Influencing Boiling Heat Transfer in Nanofluids
,”
Appl. Phys. Lett.
,
89
(
15
), p.
153107
.10.1063/1.2360892
36.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4105
4116
.10.1016/j.ijheatmasstransfer.2007.02.002
37.
Kim
,
H. D.
, and
Kim
,
M. H.
,
2007
, “
Effect of Nanoparticle Deposition on Capillary Wicking That Influences the Critical Heat Flux in Nanofluids
,”
Appl. Phys. Lett.
,
91
(
1
), p.
014104
.10.1063/1.2754644
38.
Ahn
,
H. S.
,
Lee
,
C.
,
Kim
,
H.
,
Jo
,
H.
,
Kang
,
S.
,
Kim
,
J.
,
Shin
,
J.
, and
Kim
,
M. H.
,
2010
, “
Pool Boiling CHF Enhancement by Micro/Nanoscale Modification of Zircaloy-4 Surface
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3350
3360
.10.1016/j.nucengdes.2010.07.006
39.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
123
(
6
), pp.
1071
1079
.10.1115/1.1409265
40.
Forrest
,
E.
,
Williamson
,
E.
,
Buongiorno
,
J.
,
Hu
,
L. W.
,
Rubner
,
M.
, and
Cohen
,
R.
,
2010
, “
Augmentation of Nucleate Boiling Heat Transfer and Critical Heat Flux Using Nanoparticle Thin-Film Coatings
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
58
67
.10.1016/j.ijheatmasstransfer.2009.10.008
41.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p.
241603
.10.1063/1.4724190
42.
O'Hanley
,
H.
,
Coyle
,
C.
,
Buongiorno
,
J.
,
McKrell
,
T.
,
Hu
,
L.-W.
,
Rubner
,
M.
, and
Cohen
,
R.
,
2013
, “
Separate Effects of Surface Roughness, Wettability, and Porosity on the Boiling Critical Heat Flux
,”
Appl. Phys. Lett.
,
103
(
2
), p.
024102
.10.1063/1.4813450
43.
Kwark
,
S. M.
,
Amaya
,
M.
,
Kumar
,
R.
,
Moreno
,
G.
, and
You
,
S. M.
,
2010
, “
Effects of Pressure, Orientation, and Heater Size on Pool Boiling of Water With Nanocoated Heaters
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5199
5208
.10.1016/j.ijheatmasstransfer.2010.07.040
44.
Sen
,
P.
,
Kalita
,
S.
,
Sen
,
D.
,
Das
,
S.
, and
Das
,
A. K.
,
2022
, “
Pool Boiling Heat Transfer on a Micro-Structured Copper Oxide Surface With Varying Wettability
,”
Chem. Eng. Technol.
,
45
(
5
), pp.
808
816
.10.1002/ceat.202100558
45.
Feng
,
B.
,
Weaver
,
K.
, and
Peterson
,
G. P.
,
2012
, “
Enhancement of Critical Heat Flux in Pool Boiling Using Atomic Layer Deposition of Alumina
,”
Appl. Phys. Lett.
,
100
(
5
), p.
053120
.10.1063/1.3681943
46.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
,
2003
, “
Pool Boiling Characteristics of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
851
862
.10.1016/S0017-9310(02)00348-4
47.
Jothi Prakash
,
C. G.
, and
Prasanth
,
R.
,
2018
, “
Enhanced Boiling Heat Transfer by Nano Structured Surfaces and Nanofluids
,”
Renewable Sustainable Energy Rev.
,
82
(Part
3
), pp.
4028
4043
.10.1016/j.rser.2017.10.069
48.
Trisaksri
,
V.
, and
Wongwises
,
S.
,
2009
, “
Nucleate Pool Boiling Heat Transfer of TiO2–R141b Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1582
1588
.10.1016/j.ijheatmasstransfer.2008.07.041
49.
Naphon
,
P.
, and
Thongjing
,
C.
,
2014
, “
Pool Boiling Heat Transfer Characteristics of Refrigerant-Nanoparticle Mixtures
,”
Int. Commun. Heat Mass Transfer
,
52
, pp.
84
89
.10.1016/j.icheatmasstransfer.2014.01.014
50.
Gobinath
,
N.
, and
Venugopal
,
T.
,
2019
, “
Nucleate Pool Boiling Heat Transfer Characteristics of R600a With CuO Nanoparticles
,”
J. Mech. Sci. Technol.
,
33
(
1
), pp.
465
473
.10.1007/s12206-018-1246-x
51.
Deb
,
S.
,
Pal
,
S.
,
Das
,
D. C.
,
Das
,
M.
,
Das
,
A. K.
, and
Das
,
R.
,
2020
, “
Surface Wettability Change on TF Nanocoated Surfaces During Pool Boiling
,”
Heat Mass Transfer
,
56
(
12
), pp.
3273
3287
.10.1007/s00231-020-02922-w
52.
Ray
,
M.
, and
Bhaumik
,
S.
,
2018
, “
Structural Properties of Glancing Angle Deposited Nanostructured Surfaces for Enhanced Boiling Heat Transfer Using Refrigerant R-141b
,”
Int. J. Heat Mass Transfer
,
88
, pp.
78
90
.
53.
Bock
,
B.
,
Bucci
,
M.
,
Markides
,
C. N.
,
Thome
,
J. R.
, and
Meyer
,
J. P.
,
2020
, “
Pool Boiling of Refrigerants Over Nanostructured and Roughened Tubes
,”
Int. J. Heat Mass Transfer
,
162
, p.
120387
.10.1016/j.ijheatmasstransfer.2020.120387
54.
Peng
,
H.
,
Ding
,
G.
,
Hu
,
H.
, and
Jiang
,
W.
,
2011
, “
Effect of Nanoparticle Size on Nucleate Pool Boiling Heat Transfer of Refrigerant/Oil Mixture With Nanoparticles
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1839
1850
.10.1016/j.ijheatmasstransfer.2010.12.035
55.
Peng
,
H.
,
Ding
,
G.
,
Hu
,
H.
, and
Jiang
,
W.
,
2010
, “
Influence of Carbon Nanotubes on Nucleate Pool Boiling Heat Transfer Characteristics of Refrigerant-Oil Mixture
,”
Int. J. Therm. Sci.
,
49
(
12
), pp.
2428
2438
.10.1016/j.ijthermalsci.2010.06.025
56.
Ujereh
,
S.
,
Fisher
,
T.
, and
Mudawar
,
I.
,
2007
, “
Effects of Carbon Nanotube Arrays on Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4023
4038
.10.1016/j.ijheatmasstransfer.2007.01.030
57.
Chen
,
R.
,
Lu
,
M.-C.
,
Srinivasan
,
V.
,
Wang
,
Z.
,
Cho
,
H. H.
, and
Majumdar
,
A.
,
2009
, “
Nanowires for Enhanced Boiling Heat Transfer
,”
Nano Lett.
,
9
(
2
), pp.
548
553
.10.1021/nl8026857
58.
Yao
,
Z.
,
Lu
,
Y. W.
, and
Kandlikar
,
S. G.
,
2011
, “
Effects of Nanowire Height on Pool Boiling Performance of Water on Silicon Chips
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2084
2090
.10.1016/j.ijthermalsci.2011.06.009
59.
Udaya Kumar
,
G.
,
Suresh
,
S.
,
Thansekhar
,
M. R.
, and
Halpati
,
D.
,
2018
, “
Role of Inter-Nanowire Distance in Metal Nanowires on Pool Boiling Heat Transfer Characteristics
,”
J. Colloid Interface Sci.
,
532
, pp.
218
230
.10.1016/j.jcis.2018.07.092
60.
Udaya Kumar
,
G.
,
Suresh
,
S.
,
Thansekhar
,
M. R.
, and
Dinesh Babu
,
P.
,
2017
, “
Effect of Diameter of Metal Nanowires on Pool Boiling Heat Transfer With FC-72
,”
Appl. Surf. Sci.
,
423
, pp.
509
520
.10.1016/j.apsusc.2017.06.135
61.
Zou
,
A.
, and
Maroo
,
S. C.
,
2013
, “
Critical Height of Micro/Nano Structures for Pool Boiling Heat Transfer Enhancement
,”
Appl. Phys. Lett.
,
103
(
22
), p.
221602
.10.1063/1.4833543
62.
Zou
,
A.
,
Poudel
,
S.
,
Raut
,
S. P.
, and
Maroo
,
M. C.
,
2019
, “
Pool Boiling Coupled With Nanoscale Evaporation Using Buried Nanochannels
,”
Langmuir
,
2019
35
(
39
), pp.
12689
−–
12693
.10.1021/acs.langmuir.9b02162
63.
Ridwan
,
S.
, and
McCarthy
,
M.
,
2019
, “
Nanostructure-Supported Evaporation Underneath a Growing Bubble
,”
ACS Appl. Mater. Interfaces
,
2019
,
11
(
13
), pp.
12441
12451
.10.1021/acsami.8b21260
64.
Raghupathi
,
P.
, and
Kandlikar
,
S. G.
,
2017
, “
Pool Boiling Enhancement Through Contact Line Augmentation
,”
Appl. Phys. Lett.
,
110
(
20
), p.
204101
.10.1063/1.4983720
65.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2017
, “
Coupled Motion of Contact Line on Nanoscale Chemically Heterogeneous Surfaces for Improved Bubble Dynamics in Boiling
,”
Sci. Rep.
,
7
(
1
), p.
15691
.10.1038/s41598-017-16035-8
66.
Protich
,
Z.
,
Santhanam
,
K. S. V.
,
Jaikumar
,
A.
,
Kandlikar
,
S. G.
, and
Wong
,
P.
,
2016
, “
Electrochemical Deposition of Copper in Graphene Quantum Dot Bath: Pool Boiling Enhancement
,”
J. Electrochem. Soc.
,
163
(
6
), pp.
E166
E172
.10.1149/2.0961606jes
67.
Jaikumar
,
A.
,
Gupta
,
A.
,
Kandlikar
,
S. G.
,
Yang
,
C.-Y.
, and
Su
,
C.-Y.
,
2017
, “
Scale Effects of Graphene and Graphene Oxide Coatings on Pool Boiling Enhancement Mechanisms
,”
109
, pp.
357
366
.
68.
Jaikumar
,
A.
,
Rishi
,
A.
,
Gupta
,
A.
, and
Kandlikar
,
S. G.
,
2017
, “
Microscale Morphology Effects of Copper–Graphene Oxide Coatings on Pool Boiling Characteristics
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
11
), p.
111509
.10.1115/1.4036695
69.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2017
, “
Pool Boiling Inversion Through Bubble Induced Macroconvection
,”
Appl. Phys. Lett.
,
110
(
9
), p.
094107
.10.1063/1.4977557
70.
Rishi
,
A.
,
Kandlikar
,
S. G.
, and
Gupta
,
A.
,
2019
, “
Improved Wettability of Graphene Nanoplatelets (GNP)/Copper Porous Coatings for Dramatic Improvements in Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
132
, pp.
462
472
.10.1016/j.ijheatmasstransfer.2018.11.169
71.
Rishi
,
A.
,
Kandlikar
,
S. G.
,
Rozati
,
S. A.
, and
Gupta
,
A.
,
2020
, “
Effect of Ball Milled and Sintered Graphene Nanoplatelets–Copper Composite Coatings on Bubble Dynamics and Pool Boiling Heat Transfer
,”
Adv. Eng. Mater.
,
22
(
7
), p.
1901562
.10.1002/adem.201901562
72.
Rishi
,
A.
,
Kandlikar
,
S. G.
,
Rozati
,
S. A.
, and
Gupta
,
A.
,
2020
, “
Salt Templated and Graphene Nanoplatelets Draped Copper (GNP-Draped-Cu) Composites for Dramatic Improvements in Pool Boiling Heat Transfer
,”
Sci. Rep.
,
10
(
1
), p.
11941
.10.1038/s41598-020-68672-1
73.
Yao
,
Z.
,
Lu
,
Y. W.
, and
Kandlikar
,
S. G.
,
2012
, “
Micro/Nano Hierarchical Structure in Microchannel Heat Sink for Boiling Enhancement
,” 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (
MEMS
), Paris, France, Jan. 29–Feb. 2, pp.
285
288
.10.1109/MEMSYS.2012.6170150
74.
Yao
,
Z.
,
Lu
,
Y. W.
, and
Kandlikar
,
S. G.
,
2012
, “
Fabrication of Nanowires on Orthogonal Surfaces of Microchannels and Their Effect on Pool Boiling
,”
J. Micromech. Microeng.
,
22
(
11
), p.
115005
.10.1088/0960-1317/22/11/115005
75.
Chen
,
G.
, and
Li
,
C. H.
,
2019
, “
Combined Effects of Liquid Wicking and Hydrodynamic Instability on Pool Boiling Critical Heat Flux by Two-Tier Copper Structures of Nanowires and Microgroove
,”
Int. J. Heat Mass Transfer
,
129
, pp.
1222
1231
.10.1016/j.ijheatmasstransfer.2018.10.002
76.
Song
,
Y.
,
Díaz-Marín
,
C. D.
,
Zhang
,
L.
,
Cha
,
H.
,
Zhao
,
Y.
, and
Wang
,
E. N.
,
2022
, “
Three-Tier Hierarchical Structures for Extreme Pool Boiling Heat Transfer Performance
,”
Adv. Mater.
,
34
(
32
), p.
2200899
.10.1002/adma.202200899
77.
Dong
,
L.
,
Quan
,
X.
, and
Cheng
,
P.
,
2014
, “
An Experimental Investigation of Enhanced Pool Boiling Heat Transfer From Surfaces With Micro/Nano-Structures
,”
Int. J. Heat Mass Transfer
,
71
, pp.
189
196
.10.1016/j.ijheatmasstransfer.2013.11.068
78.
Lin
,
L.
,
Hu
,
Y.
,
Zhu
,
M.
,
Su
,
Z.
,
Liu
,
K.
,
Fan
,
C.
, and
Huang
,
J.
,
2022
, “
Boiling Heat Transfer on the Micro-Nano Structured Surface Fabricated by Mechanical Sandblasting/Alkali-Assisted Oxidation
,”
Int. J. Heat Mass Transfer
,
183
, p.
122079
.10.1016/j.ijheatmasstransfer.2021.122079
79.
Liu
,
B.
,
Yang
,
X.
,
Jie
,
Z.
,
Wei
,
J.
, and
Li
,
Q.
,
2022
, “
Enhanced Pool Boiling on Micro-Nano Composited Surfaces With Nanostructures on Micro-Pin-Fins
,”
Int. J. Heat Mass Transfer
,
190
, p.
122812
.10.1016/j.ijheatmasstransfer.2022.122812
80.
Li
,
J.
,
Zhao
,
Y.
,
Ma
,
J.
,
Fu
,
W.
,
Yan
,
X.
,
Rabbi
,
K. F.
, and
Miljkovic
,
N.
,
2022
, “
Superior Ntidegeneration Hierarchical Nanoengineered Wicking Surfaces for Boiling Enhancement
,”
Adv. Funct. Mater.
,
32
(
8
), p.
2108836
.10.1002/adfm.202108836
You do not currently have access to this content.