Abstract

The radiative transfer in atmosphere-ocean systems with different atmosphere models is evaluated by the discrete spherical harmonics method. Four standard atmosphere models, namely, Tropical, Mid-Latitude Summer, Mid-Latitude Winter, and U.S. Standard (1976) limited to a height of 16km are considered above an ocean. Two monochromatic radiations are considered according to the preponderance of the interaction they present with the participating medium, namely, λ=0.55μm for scattering by particles and λ=16.8μm for absorption and emission by water vapor and carbon dioxide. The absorption by the atmospheric gases considered is analyzed by the statistical narrow-band correlated-k method. The optical properties of aerosols and water clouds considered are calculated by Lorenz-Mie theory. The results obtained by the proposed discrete spherical harmonics method are in agreement with those of the literature and demonstrate the efficiency and accuracy of the developed radiative transfer code. The effects of the governing parameters of the system are investigated and show that the presence of the ocean contributes to increasing the upward radiation fluxes in the atmosphere. The presence of aerosols in the atmosphere leads to downward radiance curves at ground level that show significant peaks around the zenith angle of observation θ=0deg. Additionally, the presence of the cloud in the atmosphere creates a discontinuity in the radiation flux curves at the height of the cloud.

References

1.
Chandrasekhar
,
S.
,
1960
,
Radiative Transfer
,
Dover, Mineola, NY.
2.
Klose
,
A. D.
,
2009
, “
Radiative Transfer of Luminescence Light in Biological Tissue
,” In
Light Scattering Reviews 4
,
Springer
,
Berlin, Heidelberg
, pp.
293
345
.
3.
McMillan
,
L.
,
O'Mahoney
,
P.
,
Feng
,
K.
,
Zheng
,
K.
,
Barnard
,
I. R.
,
Li
,
C.
,
Ibbotson
,
S.
,
Eadie
,
E.
,
Brown
,
C. T. A.
, and
Wood
,
K.
,
2021
, “
Development of a Predictive Monte Carlo Radiative Transfer Model for Ablative Fractional Skin Lasers
,”
Lasers Surg. Med.
,
53
(
5
), pp.
731
740
.10.1002/lsm.23335
4.
Viskanta
,
R.
,
2008
, “
Computation of Radiative Transfer in Combustion Systems
,”
Int. J. Numer. Methods Heat Fluid Flow
,
18
(
3/4
), pp.
415
442
.10.1108/09615530810853664
5.
Yang
,
Y.
,
Zheng
,
S.
, and
Lu
,
Q.
,
2021
, “
Numerical Solutions of Non-Gray Gases and Particles Radiative Transfer in Three-Dimensional Combustion System Using DRESOR and SNBCK
,”
Int. J. Therm. Sci.
,
161
, p.
106783
.10.1016/j.ijthermalsci.2020.106783
6.
Chowdhary
,
J.
,
Cairns
,
B.
,
Waquet
,
F.
,
Knobelspiesse
,
K.
,
Ottaviani
,
M.
,
Redemann
,
J.
,
Travis
,
L.
, and
Mishchenko
,
M.
,
2012
, “
Sensitivity of Multiangle, Multispectral Polarimetric Remote Sensing Over Open Oceans to Water-Leaving Radiance: Analyses of RSP Data Acquired During the MILAGRO Campaign
,”
Remote Sens. Environ.
,
118
, pp.
284
308
.10.1016/j.rse.2011.11.003
7.
Stamnes
,
K.
,
Hamre
,
B.
,
Stamnes
,
S.
,
Chen
,
N.
,
Fan
,
Y.
,
Li
,
W.
,
Lin
,
Z.
, and
Stamnes
,
J.
,
2018
, “
Progress in Forward-Inverse Modeling Based on Radiative Transfer Tools for Coupled Atmosphere-Snow/Ice-Ocean Systems: A Review and Description of the Accurt Model
,”
Appl. Sci.
,
8
(
12
), p.
2682
.10.3390/app8122682
8.
Zhai
,
P.
,
Gao
,
M.
,
Franz
,
B. A.
,
Werdell
, P.
J.
,
Ibrahim
,
A.
,
Hu
,
Y.
, and
Chowdhary
,
J.
,
2022
, “
A Radiative Transfer Simulator for PACE: Theory and Applications
,”
Front. Remote Sens.
,
3
, pp.
1
11
.10.3389/frsen.2022.840188
9.
Shettle
,
E. P.
, and
Fenn
,
R. W.
,
1979
,
Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties
,
Air Force Geophysics Laboratory, Air Force Systems Command, United States Air Force
, Hanscom AFB, MA, No. AFGL-TR-79-214.
10.
Köpke
,
P.
,
Hess
,
M.
,
Schult
,
I.
, and
Shettle
,
E. P.
,
1997
,
Global Aerosol Data Set
,
Max-Planck-Institut Für Meteorologie
, Max-Planck-Institut für Meteorologie, Hamburg, Germany, Report No. 243.
11.
Hess
,
M.
,
Koepke
,
P.
, and
Schult
,
I.
,
1998
, “
Optical Properties of Aerosols and Clouds: The Software Package OPAC
,”
Bull. Am. Meteorol. Soc.
,
79
(
5
), pp.
831
844
.10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
12.
Jin
,
Z.
, and
Stamnes
,
K.
,
1994
, “
Radiative Transfer in Nonuniformly Refracting Layered Media: Atmosphere–Ocean System
,”
Appl. Opt.
,
33
(
3
), pp.
431
442
.10.1364/AO.33.000431
13.
Kamdem
,
H. T. T.
,
Ymeli
,
G. L.
, and
Tapimo
,
R.
,
2017
, “
The Discrete Ordinates Characteristics Solution to the One-Dimensional Radiative Transfer Equation
,”
J. Comput. Theor. Transp.
,
46
(
5
), pp.
346
365
.10.1080/23324309.2017.1352519
14.
Evans
,
K. F.
,
1993
, “
Two-Dimensional Radiative Transfer in Cloudy Atmospheres: The Spherical Harmonic Spatial Grid Method
,”
J. Atmos. Sci.
,
50
(
18
), pp.
3111
3124
.10.1175/1520-0469(1993)050<3111:TDRTIC>2.0.CO;2
15.
Zhu
,
K. Y.
,
Huang
,
Y.
, and
Wang
,
J.
,
2013
, “
Combination of Spherical Harmonics and Spectral Method for Radiative Heat Transfer in One-Dimensional Anisotropic Scattering Medium With Graded Index
,”
Int. J. Heat Mass Transfer
,
62
, pp.
200
204
.10.1016/j.ijheatmasstransfer.2013.03.001
16.
Wang
,
C. H.
,
Feng
,
Y. Y.
,
Yang
,
Y. H.
,
Zhang
,
Y.
,
Yue
,
K.
, and
Zhang
,
X. X.
,
2020
, “
Chebyshev Collocation Spectral Method for Vector Radiative Transfer Equation and Its Applications in Two-Layered Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
243
, p.
106822
.10.1016/j.jqsrt.2019.106822
17.
Evans
,
K. F.
,
1998
, “
The Spherical Harmonics Discrete Ordinate Method for Three-Dimensional Atmospheric Radiative Transfer
,”
J. Atmos. Sci.
,
55
(
3
), pp.
429
446
.10.1175/1520-0469(1998)055<0429:TSHDOM>2.0.CO;2
18.
Tapimo
,
R.
,
Tagne Kamdem
,
H. T.
, and
Yemele
,
D.
,
2018a
, “
A Discrete Spherical Harmonics Method for Radiative Transfer Analysis in Inhomogeneous Polarized Planar Atmosphere
,”
Astrophys. Space Sci.
,
363
(
3
), pp.
1
14
.10.1007/s10509-018-3266-5
19.
Tapimo
,
R.
,
Kamdem
,
H. T. T.
, and
Yemele
,
D.
,
2018b
, “
Discrete Spherical Harmonics Method for Radiative Transfer in Scalar Planar Inhomogeneous Atmosphere
,”
JOSA A
,
35
(
7
), pp.
1081
1090
.10.1364/JOSAA.35.001081
20.
Fokou
,
A.
,
Tapimo
,
R.
,
Ymeli
,
G. L.
,
Tchinda
,
R.
, and
Kamdem
,
H. T. T.
,
2021
, “
Radiation Distribution in Inhomogeneous Atmosphere-Ocean System by Discrete Spherical Harmonics Method
,”
J. Quant. Spectrosc. Radiat. Transfer
,
270
, p.
107707
.10.1016/j.jqsrt.2021.107707
21.
Anderson
,
G. P.
,
Clough
,
S. A.
,
Kneizys
,
F. X.
,
Chetwynd
,
J. H.
, and
Shettle
,
E. P.
,
1986
,
AFGL Atmospheric Constituent Profiles (0.120 km)
,
Air Force Geophysics Lab Hanscom AFB MA
, MA.
22.
Garcia
,
R. D. M.
,
Siewert
,
C. E.
, and
Yacout
,
A. M.
,
2008
, “
Radiative Transfer in a Multi-Layer Medium Subject to Fresnel Boundary and Interface Conditions and Uniform Illumination by Obliquely Incident Parallel Rays
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
12–13
), pp.
2151
2170
.10.1016/j.jqsrt.2008.03.012
23.
Wu
,
C. Y.
, and
Bo-Ting
,
L.
,
1996
, “
Radiative Transfer in a Two-Layer Slab With Fresnel Interfaces
,”
J. Quant. Spectrosc. Radiat. Transfer
,
56
(
4
), pp.
573
589
.10.1016/0022-4073(96)00070-2
24.
Abhiram
,
K. T. V. S.
,
Deiveegan
,
M.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2008
, “
Multilayer Differential Discrete Ordinate Method for Inhomogeneous Participating Media
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2628
2635
.10.1016/j.ijheatmasstransfer.2008.01.012
25.
Lacis
,
A. A.
, and
Oinas
,
V.
,
1991
, “
A Description of the Correlated k Distribution Method for Modeling Nongray Gaseous Absorption, Thermal Emission, and Multiple Scattering in Vertically Inhomogeneous Atmospheres
,”
J. Geophys. Res.: Atmospheres
,
96
(
D5
), pp.
9027
9063
.10.1029/90JD01945
26.
Liou
,
K. N.
,
2002
,
An Introduction to Atmospheric Radiation
,
84
,
Elsevier Science, Academic Press.
27.
Garcia
,
R. D. M.
, and
Siewert
,
C. E.
,
1982
, “
Radiative Transfer in Finite Inhomogeneous Plane-Parallel Atmospheres
,”
J. Quant. Spectrosc. Radiat. Transfer
,
27
(
2
), pp.
141
148
.10.1016/0022-4073(82)90134-0
28.
Bulgarelli
,
B.
,
Kisselev
,
V. B.
, and
Roberti
,
L.
,
1999
, “
Radiative Transfer in the Atmosphere–Ocean System: The Finite-Element Method
,”
Appl. Opt.
,
38
(
9
), pp.
1530
1542
.10.1364/AO.38.001530
29.
Tomasi
,
C.
,
Vitale
,
V.
,
Petkov
,
B.
,
Lupi
,
A.
, and
Cacciari
,
A.
,
2005
, “
Improved Algorithm for Calculations of Rayleigh-Scattering Optical Depth in Standard Atmospheres
,”
Appl. Opt.
,
44
(
16
), pp.
3320
3341
.10.1364/AO.44.003320
30.
Liu
,
F.
,
Smallwood
,
G. J.
, and
Gülder
,
Ö. L.
,
2000
, “
Application of the Statistical Narrow-Band Correlated-k Method to Low-Resolution Spectral Intensity and Radiative Heat Transfer Calculations—Effects of the Quadrature Scheme
,”
Int. J. Heat Mass Transfer
,
43
(
17
), pp.
3119
3135
.10.1016/S0017-9310(99)00343-9
31.
Zheng
,
S.
,
Sui
,
R.
,
Sun
,
Y.
,
Yang
,
Y.
, and
Lu
,
Q.
,
2021
, “
A Review on the Applications of Non-Gray Gas Radiation Models in Multi-Dimensional Systems
,”
ES Energy Environ.
,
12
, pp.
4
45
.10.30919/esee8c423
32.
Chowdhary
,
J.
,
Zhai
,
P. W.
,
Xu
,
F.
,
Frouin
,
R.
, and
Ramon
,
D.
,
2020
, “
Testbed Results for Scalar and Vector Radiative Transfer Computations of Light in Atmosphere-Ocean Systems
,”
J. Quant. Spectrosc. Radiat. Transfer
,
242
, p.
106717
.10.1016/j.jqsrt.2019.106717
33.
Chu
,
P. C.
,
Fan
,
C.
, and
Liu
,
W. T.
,
2000
, “
Determination of Vertical Thermal Structure From Sea Surface Temperature
,”
J. Atmos. Oceanic Technol.
,
17
(
7
), pp.
971
979
.10.1175/1520-0426(2000)017<0971:DOVTSF>2.0.CO;2
You do not currently have access to this content.