Abstract

The application of ceramics in cryogenic systems is expanding. Thermophysical properties of these ceramics in cryogenic temperatures are thus needed. In this investigation, the thermal conductivities of 7740 Pyrex, 99.99% purity dense Alumina, and dense 8% mol yttrium-stabilized zirconia (YSZ) were experimentally measured in the 75–300 K temperature range, using the guarded comparative-longitudinal heat flow technique in accordance with ASTM International's ASTM E1225-13 standard. These ceramics are widely applied in cryogenics systems, including some critical components of Stirling and pulse-tube cryocoolers. The measured conductivities for Pyrex are in general agreement, but slightly higher than available published data. The data for 99.99% purity dense alumina agree with data from two previously published sources in the aforementioned temperature range. Our experimental thermal conductivity data for dense 8% mol YSZ appear to be the first such data in the aforementioned temperature range and indicate a temperature-sensitive distribution with a peak at about 140 K temperature. The data also converge with two sets of previously published experimental data representing temperatures lower and higher than the aforementioned temperature range. Empirical correlations are developed for the thermal conductivity of 7740 Pyrex and 99.99%—purity dense alumina for the 75–300 K temperature range based on our experimental data. Empirical correlations are also proposed for the 40–400 K temperature range for 8% Mol YSZ, based on the experimental data generated in this work as well as the data from two other sources.

References

1.
Ritter
,
S. K.
,
2015
, “
PYREX AT 100 Corning's Century-Old GLASS INNOVATION Has Had a Revolutionary Impact on Cooking and Chemistry
,”
Chem. Eng. News
,
93
(
20
), pp.
35
36
.10.1021/cen-09320-scitech2
2.
Antoniadis
,
K. D.
,
Tyrou
,
A.
,
Assael
,
M. J.
,
Li
,
X.
,
Wu
,
J.
, and
Ebert
,
H.-P.
,
2020
, “
Reference Correlations for the Thermal Conductivity of Solid BK7, PMMA, Pyrex 7740, Pyroceram 9606 and SS304
,”
Int. J. Thermophys.
41
(
7
), pp.
1
35
.10.1007/s10765-020-02678-9
3.
Cahill
,
D. G.
,
1990
, “
Thermal Conductivity Measurement From 30 to 750 K: The 3ω Method
,”
Rev. Sci. Instrum.
61
(
2
), pp.
802
808
.10.1063/1.1141498
4.
Nemoto
,
T.
,
Sasaki
,
S.
, and
Hakuraku
,
Y.
,
1985
, “
Thermal Conductivity of Alumina and Silicon Carbide Ceramics at Low Temperatures
,”
J. Cryog. Supercond. Soc. Jpn.
20
(
3
), pp.
166
167
.10.2221/jcsj.20.166
5.
Xie
,
Z.
,
Xue
,
W.
,
Chen
,
H.
, and
Huang
,
Y.
,
2011
, “
Mechanical and Thermal Properties of 99% and 92% Alumina at Cryogenic Temperatures
,”
Ceram. Int.
37
(
7
), pp.
2165
2168
.10.1016/j.ceramint.2011.03.066
6.
Schlichting
,
K.
,
Padture
,
N.
, and
Klemens
,
P. G.
,
2001
, “
Thermal Conductivity of Dense and Porous Yttria-Stabilized Zirconia
,”
J. Mater. Sci.
36
(
12
), pp.
3003
3010
.10.1023/A:1017970924312
7.
An
,
K.
,
Ravichandran
,
K. S.
,
Dutton
,
R. E.
, and
Semiatin
,
S. L.
,
1999
, “
Microstructure, Texture, and Thermal Conductivity of Single‐Layer and Multilayer Thermal Barrier Coatings of Y2O3‐Stabilized ZrO2 and Al2O3 Made by Physical Vapor Deposition
,”
J. Am. Ceram. Soc.
82
(
2
), pp.
399
406
.10.1111/j.1551-2916.1999.tb20076.x
8.
Hasselman
,
D.
,
Johnson
,
L. F.
,
Bentsen
,
L. D.
,
Syed
,
R.
,
Lee
,
H.
, and
Swain
,
M. V.
,
1987
, “
Thermal Diffusivity and Conductivity of Dense Polycrystalline Zr02 Ceramics: A Survey
,”
Am. Ceram. Soc. Bull.
66
(
5
), pp.
799
806
.
9.
Barea
,
R.
,
Belmonte
,
M.
,
Osendi
,
M. I.
, and
Miranzo
,
P.
,
2003
, “
Thermal Conductivity of Al2O3/SiC Platelet Composites
,”
J. Eur. Ceram. Soc.
23
(
11
), pp.
1773
1778
.10.1016/S0955-2219(02)00449-1
10.
Bansal
,
N. P.
, and
Zhu
,
D.-M.
,
2003
, “
Thermal Conductivity of Alumina-Toughened Zirconia Composites
,” No. E-14314.
11.
Ackerman
,
D.
,
Moy
,
D.
,
Potter
,
R.
,
Anderson
,
A.
, and
Lawless
,
W. N.
,
1981
, “
Glassy Behavior of Crystalline Solids at Low Temperatures
,”
Phys. Rev. B
,
23
(
8
), p.
3886
.10.1103/PhysRevB.23.3886
12.
ASTM,
2013
, “
Standard Test Method for Thermal Conductivity of Solids Using the Guarded-Comparative-Longitudinal Heat Flow Technique
,” ASTM International, West Conshohocken, PA, No. ASTM E1225-13.
13.
Ziegler
,
W.
,
Mullins
,
J.
, and
Hwa
,
S.
,
1963
,
Specific Heat and Thermal Conductivity of Four Commercial Titanium Alloys From 20 to 300 K
,
Advances in Cryogenic Engineering, Springer
,
Boston, MA
, pp.
268
277
.
14.
Perrella
,
M.
, and
Ghiaasiaan
,
S. M.
,
2021
, “
Hydrodynamic Resistance Parameters of Regenerator Filler Materials at Cryogenic Temperatures
,”
Cryogenics
,
117
, p.
103320
.10.1016/j.cryogenics.2021.103320
15.
Ghavami
,
A.
,
2022
, “
Thermo-Fluid Aspects of Miniature Stirling Cryocoolers for Small Satellites
,” Ph.D. thesis,
Georgia Institute of Technology
, Atlanta, GA.
16.
Yang
,
G.
,
Migone
,
A.
, and
Johnson
,
K. W.
,
1992
, “
Heat Capacity and Thermal Diffusivity of a Glass Sample
,”
Phys. Rev.
,
45
(
1
), p.
157
.10.1103/PhysRevB.45.157
17.
Tye
,
R. P.
, and
Salmon
,
D. R.
, “
Thermal Conductivity Certified Reference Materials: Pyrex 7740 and Polymethylmethacrylate
,”
Thermal Conductivity 26/Thermal Expansion 14: Joint Conferences
, Cambridge, MA, Aug. 6–8,
2001
,
DEStech Publications, Inc
, p.
437
.
18.
Powell
,
R.
,
Ho
,
C. Y.
, and
Liley
,
P. E.
,
1966
,
Thermal Conductivity of Selected Materials
,
US Department of Commerce, National Bureau of Standards
Washington, DC
.
19.
Berman
,
R.
,
1952
, “
The Thermal Conductivity of Some Polycrystalline Solids at Low Temperatures
,”
Proc. Phys. Soc., London, Sect. A
,
65
(
12
), p.
1029
.10.1088/0370-1298/65/12/311
20.
Touloukian
,
Y.
,
Powell
,
R.
,
Ho
,
C.
, and
Klemens
,
1970
,
Thermal Conductivity: Nonmetallic Solids, Vol. 2 of Thermophysical Properties of Matter
,
Y. S.
Touloukian
, series ed.,
IFI/Plenum
,
New York
, p.
922
.
You do not currently have access to this content.