Abstract

Many engineering applications involve porous media and rely on non-Newtonian working fluids. In this paper, the seepage flow of a non-Newtonian fluid saturating a vertical porous layer is studied. The buoyant flow is thermally driven by the boundaries of the porous layer, which are permeable surfaces kept at different temperatures. In order to model the seepage flow of both shear-thinning (pseudoplastic) and shear-thickening (dilatant) fluids, reference is made to the Ostwald-de Waele rheological model implemented via the power-law extended form of Darcy's law. The basic stationary flow is parallel to the vertical axis and shows a single-cell pattern, where the cell has infinite height and can display a core-region of enhanced/inhibited flow according to the fluid's rheological behavior. By applying small perturbations, a linear stability analysis of the basic flow is performed to determine the onset conditions for a multicellular pattern. This analysis is carried out numerically by employing the shooting method. The neutral stability curves and the values of the critical Rayleigh number are computed for different pseudoplastic and dilatant fluids. The behavior of a Newtonian fluid is also obtained as a limiting case.

References

1.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2002
,
Transport Phenomena
,
Wiley
, New York.
2.
Braun
,
D. B.
, and
Rosen
,
M. R.
,
1999
,
Rheology Modifiers Handbook
,
Elsevier
, New York.
3.
Hoyt
,
J. W.
,
1999
,
Some Applications of Non-Newtonian Fluid Flow
,
Elsevier
, New York.
4.
Christopher
,
R. H.
, and
Middleman
,
S.
,
1965
, “
Power-Law Flow Through a Packed Tube
,”
Ind. Eng. Chem. Fundam.
,
4
(
4
), pp.
422
426
.10.1021/i160016a011
5.
Nakayama
,
A.
, and
Shenoy
,
A. V.
,
1993
, “
Combined Forced and Free Convection Heat Transfer in Power-Law Fluid-Saturated Porous Media
,”
Appl. Sci. Res.
,
50
(
1
), pp.
83
95
.10.1007/BF01086454
6.
Shenoy
,
A. V.
,
1993
, “
Darcy-Forchheimer Natural, Forced and Mixed Convection Heat Transfer in Non-Newtonian Power-Law Fluid-Saturated Porous Media
,”
Transp. Porous Media
,
11
(
3
), pp.
219
241
.10.1007/BF00614813
7.
Longo
,
S.
,
Di Federico
,
V.
,
Chiapponi
,
L.
, and
Archetti
,
R.
,
2013
, “
Experimental Verification of Power-Law non-Newtonian Axisymmetric Porous Gravity Currents
,”
J. Fluid Mech.
,
731
, p. R2.10.1017/jfm.2013.389
8.
Tang
,
G. H.
, and
Lu
,
Y. B.
,
2014
, “
A Resistance Model for Newtonian and Power-Law non-Newtonian Fluid Transport in Porous Media
,”
Transp. Porous Media
,
104
(
2
), pp.
435
449
.10.1007/s11242-014-0342-3
9.
Gill
,
A. E.
,
1969
, “
A Proof That Convection in a Porous Vertical Slab is Stable
,”
J. Fluid Mech.
,
35
(
3
), pp.
545
547
.10.1017/S0022112069001273
10.
Rees
,
D. A. S.
,
1988
, “
The Stability of Prandtl-Darcy Convection in a Vertical Porous Layer
,”
Int. J. Heat Mass Transfer
,
31
(
7
), pp.
1529
1534
.10.1016/0017-9310(88)90260-8
11.
Straughan
,
B.
,
1988
, “
A Nonlinear Analysis of Convection in a Porous Vertical Slab
,”
Geophys. Astrophys. Fluid Dyn.
,
42
(
3–4
), pp.
269
275
.10.1080/03091928808213611
12.
Lewis
,
S.
,
Bassom
,
A. P.
, and
Rees
,
D. A.
,
S.
,
1995
, “
The Stability of Vertical Thermal Boundary-Layer Flow in a Porous Medium
,”
Eur. J. Mech. B Fluids
,
14
, pp.
395
407
.
13.
Rees
,
D. A.
,
S.
,
2011
, “
The Effect of Local Thermal Nonequilibrium on the Stability of Convection in a Vertical Porous Channel
,”
Transp. Porous Media
,
87
(
2
), pp.
459
464
.10.1007/s11242-010-9694-5
14.
Scott
,
N. L.
, and
Straughan
,
B.
,
2013
, “
A Nonlinear Stability Analysis of Convection in a Porous Vertical Channel Including Local Thermal Nonequilibrium
,”
J. Math. Fluid Mech.
,
15
(
1
), pp.
171
178
.10.1007/s00021-012-0109-y
15.
Shankar
,
B. M.
,
Kumar
,
J.
, and
Shivakumara
,
I. S.
,
2015
, “
Effect of Horizontal Alternating Current Electric Field on the Stability of Natural Convection in a Dielectric Fluid Saturated Vertical Porous Layer
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
4
), p.
042501
.10.1115/1.4029348
16.
Naveen
,
S. B.
,
Shankar
,
B. M.
, and
Shivakumara
,
I. S.
,
2020
, “
Finite Darcy-Prandtl Number and Maximum Density Effects on Gill's Stability Problem
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
10
), p.
102601
.10.1115/1.4047506
17.
Barletta
,
A.
, and
Celli
,
M.
,
2021
, “
Anisotropy and the Onset of the Thermoconvective Instability in a Vertical Porous Layer
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
10
), p.
102601
.10.1115/1.4051322
18.
Barletta
,
A
, and
de Alves
,
B. L. S.
,
2014
, “
On Gill's Stability Problem for Non-Newtonian Darcy's Flow
,”
Int. J. Heat Mass Transfer
,
79
(
4
), pp.
759
768
.10.1016/j.ijheatmasstransfer.2014.08.051
19.
Shankar
,
B. M.
, and
Shivakumara
,
I. S.
,
2017
, “
On the Stability of Natural Convection in a Porous Vertical Slab Saturated With an Oldroyd-B Fluid
,”
Theor. Comput. Fluid Dyn.
,
31
(
3
), pp.
221
231
.10.1007/s00162-016-0415-8
20.
Shankar
,
B. M.
, and
Shivakumara
,
I. S.
,
2017
, “
Effect of Local Thermal Nonequilibrium on the Stability of Natural Convection in an Oldroyd-B Fluid Saturated Vertical Porous Layer
,”
ASME J. Heat Transfer-Trans. ASME
,
139
, p.
044503
.10.1115/1.4035199
21.
Lazzari
,
S.
,
Celli
,
M.
, and
Barletta
,
A.
,
2021
, “
Stability of a Buoyant Oldroyd-B Flow Saturating a Vertical Porous Layer With Open Boundaries
,”
Fluids
,
6
(
11
), p.
375
.10.3390/fluids6110375
22.
Kefayati
,
G. R.
,
2019
, “
Lattice Boltzmann Method for Natural Convection of a Bingham Fluid in a Porous Cavity
,”
Phys. A Stat. Mech. Appl.
,
521
, pp.
146
172
.10.1016/j.physa.2019.01.044
23.
Rees
,
D. A. S.
,
2020
, “
Darcy-Bénard-Bingham Convection
,”
Phys. Fluids
,
32
(
8
), p.
084107
.10.1063/5.0018775
24.
Rees
,
D. A.
,
S.
,
2022
, “
Free Convection of a Bingham Fluid in a Differentially-Heated Porous Cavity: The Effect of a Square Grid Microstructure
,”
Physics
,
4
(
1
), pp.
202
216
.10.3390/physics4010015
25.
Barletta
,
A.
,
2015
, “
A Proof That Convection in a Porous Vertical Slab May Be Unstable
,”
J. Fluid Mech.
,
770
, pp.
273
288
.10.1017/jfm.2015.154
You do not currently have access to this content.