Abstract

Accurately predicting post-critical heat flux (CHF) heat transfer is an important but challenging task in water-cooled reactor design and safety analysis. Although numerous heat transfer correlations have been developed to predict post-CHF heat transfer, these correlations are only applicable to relatively narrow ranges of flow conditions due to the complex physical nature of the post-CHF heat transfer regimes. In this paper, a large quantity of experimental data is collected and summarized from the literature for steady-state subcooled and low-quality film boiling regimes with water as the working fluid in vertical tubular test sections. A low-quality water film boiling (LWFB) database is consolidated with a total of 22,813 experimental data points, which cover a wide flow range of the system pressure from 0.1 to 9.0 MPa, mass flux from 25 to 2750 kg/m2 s, and inlet subcooling from 1 to 70 °C. Two machine learning (ML) models, based on random forest (RF) and gradient boosted decision tree (GBDT), are trained and validated to predict wall temperatures in post-CHF flow regimes. The trained ML models demonstrate significantly improved accuracies compared to conventional empirical correlations. To further evaluate the performance of these two ML models from a statistical perspective, three criteria are investigated and three metrics are calculated to quantitatively assess the accuracy of these two ML models. For the full LWFB database, the root-mean-square errors between the measured and predicted wall temperatures by the GBDT and RF models are 5.7% and 6.2%, respectively, confirming the accuracy of the two ML models.

References

1.
Sindhuja
,
R.
,
Balakrishnan
,
A. R.
, and
Murthy
,
S. S.
,
2010
, “
Post-CHF Heat Transfer During Two-Phase Upflow Boiling of R-407C in a Vertical Pipe
,”
Appl. Therm. Eng.
,
30
(
2–3
), pp.
167
173
.10.1016/j.applthermaleng.2009.07.016
2.
Jha
,
J. M.
,
Ravikumar
,
S. V.
,
Tiara
,
A. M.
,
Sarkar
,
I.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2015
, “
Ultrafast Cooling of a Hot Moving Steel Plate by Using Alumina Nanofluid Based Air Atomized Spray Impingement
,”
Appl. Therm. Eng.
,
75
, pp.
738
747
.10.1016/j.applthermaleng.2014.10.005
3.
Kefer
,
V.
,
Käler
,
W.
, and
Kastner
,
W.
,
1989
, “
Critical Heat Flux (CHF) and Post-CHF Heat Transfer in Horizontal and Inclined Evaporator Tubes
,”
Int. J. Multiphase Flow
,
15
(
3
), pp.
385
392
.10.1016/0301-9322(89)90008-6
4.
Nelson
,
R. A.
,
1982
, “
Forced-Convective Post-CHF Heat Transfer and Quenching
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
104
(
1
), pp.
48
54
.10.1115/1.3245067
5.
Hammouda
,
N.
,
Groeneveld
,
D. C.
, and
Cheng
,
S. C.
,
1996
, “
An Experimental Study of Subcooled Film Boiling of Refrigerants in Vertical Up-Flow
,”
Int. J. Heat Mass Transfer
,
39
(
18
), pp.
3799
3812
.10.1016/0017-9310(96)00062-2
6.
Yagov
,
V. V.
,
Zabirov
,
A. R.
,
Kanin
,
P. K.
, and
Denisov
,
M. A.
,
2017
, “
Heat Transfer in Film Boiling of Subcooled Liquids: New Experimental Results and Computational Equations
,”
J. Eng. Phys. Thermophys.
,
90
(
2
), pp.
266
275
.10.1007/s10891-017-1564-3
7.
Ebrahim
,
S. A.
,
Chang
,
S.
,
Cheung
,
F. B.
, and
Bajorek
,
S. M.
,
2018
, “
Parametric Investigation of Film Boiling Heat Transfer on the Quenching of Vertical Rods in Water Pool
,”
Appl. Therm. Eng.
,
140
, pp.
139
146
.10.1016/j.applthermaleng.2018.05.021
8.
Oliveira
,
A. V. S.
,
Carrillo
,
J. P.
,
Labergue
,
A.
,
Glantz
,
T.
, and
Gradeck
,
M.
,
2020
, “
Experimental Study of Dispersed Flow Film Boiling at Sub-Channel Scale in LOCA Conditions: Influence of the Steam Flow Rate and Residual Power
,”
Appl. Therm. Eng.
,
172
, p.
115143
.10.1016/j.applthermaleng.2020.115143
9.
Ni
,
P.
,
Wen
,
Z.
,
Su
,
F.
,
Huang
,
J.
,
Liu
,
X.
,
Lou
,
G.
, and
Dou
,
R.
,
2020
, “
Film Boiling Collapse in a Solid Hot Sphere Immersed in Subcooled Forced Convection
,”
Appl. Therm. Eng.
,
166
, p.
114630
.10.1016/j.applthermaleng.2019.114630
10.
Liu
,
Q.
, and
Sun
,
X.
,
2020
, “
Wall Heat Transfer in the Inverted Annular Film Boiling Regime
,”
Nucl. Eng. Des.
,
363
, p.
110660
.10.1016/j.nucengdes.2020.110660
11.
Liu
,
Q.
,
Sun
,
H.
,
Liu
,
Y.
,
Kelly
,
J.
, and
Sun
,
X.
,
2021
, “
Experimental Study of Post-CHF Heat Transfer in a Vertical Tubular Test Section
,”
Int. J. Heat Mass Transfer
,
166
, p.
120697
.10.1016/j.ijheatmasstransfer.2020.120697
12.
Bromley
,
L. A.
,
1950
, “
Heat Transfer in Stable Film Boiling
,”
Chem. Eng. Prog.
,
46
(
5
), pp.
221
227
.https://scholar.google.com/scholar_lookup?title=Heat%20transfer%20in%20stable%20film%20boiling&publication_year=1950&author=L.A.%20Bromley
13.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.10.1016/0735-1933(85)90003-X
14.
U.S. NRC
,
2010
, “
TRACE V5.0 Theory Manual-Field Equations, Solution Methods, and Physical Models
,”
U.S. Nuclear Regulatory Commission
,
Washington, DC
.
15.
Analytis
,
G. T.
, and
Yadigaroglu
,
G.
,
1987
, “
Analytical Modeling of Inverted Annular Film Boiling
,”
Nucl. Eng. Des.
,
99
, pp.
201
212
.10.1016/0029-5493(87)90121-X
16.
Hammouda
,
N.
,
Groeneveld
,
D. C.
, and
Cheng
,
S. C.
,
1997
, “
Two-Fluid Modelling of Inverted Annular Film Boiling
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2655
2670
.10.1016/S0017-9310(96)00278-5
17.
El Nakla
,
M.
,
Groeneveld
,
D. C.
, and
Cheng
,
S. C.
,
2010
, “
Modeling Subcooled Flow Film Boiling in a Vertical Tube
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
(
2
), p.
021002
.10.1115/1.4002526
18.
Liu
,
Q.
,
Shi
,
S.
,
Sun
,
X.
, and
Kelly
,
J.
,
2018
, “
Thermal Hydraulic Performance Analysis of a Post-CHF Heat Transfer Test Facility
,”
Nucl. Eng. Des.
,
339
, pp.
53
64
.10.1016/j.nucengdes.2018.08.020
19.
Liu
,
Y.
,
Wang
,
D.
,
Sun
,
X.
,
Liu
,
Y.
,
Dinh
,
N.
, and
Hu
,
R.
,
2021
, “
Uncertainty Quantification for Multiphase-CFD Simulations of Bubbly Flows: A Machine Learning-Based Bayesian Approach Supported by High-Resolution Experiments
,”
Reliab. Eng. Syst. Saf.
,
212
, p.
107636
.10.1016/j.ress.2021.107636
20.
Liu
,
Y.
,
Hu
,
R.
, and
Balaprakash
,
P.
,
2021
, “
Uncertainty Quantification of Deep Neural Network-Based Turbulence Model for Reactor Transient Analysis
,”
ASME
Paper No. VVS2021-65045. 10.1115/VVS2021-65045
21.
Dawahdeh
,
A.
,
Oh
,
J.
,
Zhai
,
T.
, and
Palazzolo
,
A.
,
2021
, “
Computational Fluid Dynamics—Machine Learning Prediction of Machinery Coupling Windage Heating and Power Loss
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
8
), p.
082201
.10.1115/1.4051351
22.
Levy
,
Y.
,
Fan
,
H. Y.
, and
Sherbaum
,
V.
,
2005
, “
A Numerical Investigation of Mixing Processes in a Novel Combustor Application
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
127
(
12
), pp.
1334
1343
.10.1115/1.2103090
23.
Liu
,
Y.
,
Dinh
,
N.
,
Sato
,
Y.
, and
Niceno
,
B.
,
2018
, “
Data-Driven Modeling for Boiling Heat Transfer: Using Deep Neural Networks and High-Fidelity Simulation Results
,”
Appl. Therm. Eng.
,
144
, pp.
305
320
.10.1016/j.applthermaleng.2018.08.041
24.
Wei
,
H. M.
,
Su
,
G. H.
,
Tian
,
W. X.
,
Qiu
,
S. Z.
,
Ni
,
W. F.
, and
Yang
,
X. B.
,
2010
, “
Study on Dryout Point by Wavelet and GNN
,”
Appl. Therm. Eng.
,
30
(
6–7
), pp.
664
672
.10.1016/j.applthermaleng.2009.11.014
25.
Zhao
,
X.
,
Shirvan
,
K.
,
Salko
,
R. K.
, and
Guo
,
F.
,
2020
, “
On the Prediction of Critical Heat Flux Using a Physics-Informed Machine Learning-Aided Framework
,”
Appl. Therm. Eng.
,
164
, p.
114540
.10.1016/j.applthermaleng.2019.114540
26.
Jiang
,
B. T.
, and
Zhao
,
F. Y.
,
2013
, “
Combination of Support Vector Regression and Artificial Neural Networks for Prediction of Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
62
, pp.
481
494
.10.1016/j.ijheatmasstransfer.2013.03.025
27.
Yarahmadi
,
M.
,
Robert Mahan
,
J.
, and
McFall
,
K.
,
2020
, “
Artificial Neural Networks in Radiation Heat Transfer Analysis
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
9
), p.
092801
.10.1115/1.4047052
28.
Groeneveld
,
D. C.
,
1974
, “
Effect of a Heat Flux Spike on the Downstream Dryout Behavior
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
96
(
2
), pp.
121
125
.10.1115/1.3450150
29.
Chen
,
Y.
, and
Li
,
J.
,
1984
, “
Subcooled Flow Film Boiling of Water at Atmospheric Pressure
,”
X. J.
Chen
, and
T. N.
Veziroglu
,
Two-Phase Flow and Heat Transfer
,
Hemisphere Pub. Co
., London, UK, pp.
141
150
.
30.
Fung
,
K. K.
,
1981
, “
Subcooled and Low-Quality Film Boiling of Water in Vertical Flow at Atmospheric Pressure
,” Ph.D. dissertation,
University of Ottawa
,
Ottawa, ON, Canada
.
31.
Stewart
,
J. C.
,
1981
, “
Low Quality Film Boiling at Intermediate and Elevated Pressures
,” M.S. thesis,
University of Ottawa
,
Ottawa, ON, Canada
.
32.
Costigan
,
G.
,
Ralph
,
J. C.
, and
Wade
,
C. D.
,
1987
, “
Steady State Heat Transfer Measurements Relevant to Reactor Reflood Conditions, Part 1: Upflow
,” UKAEA Report No. AERE-R12561.
33.
Mosaad
,
M.
,
1988
, “
Subcooled Film Boiling Heat Transfer to Flowing Water in a Vertical Tube
,” Ph.D. dissertation,
Technische Universitat Berlin
,
Berlin, Germany
.
34.
Chen
,
Y.
,
Fu
,
X.
, and
Chen
,
S.
,
1988
, “
Experimental and Analytical Study of Inverted Annular Film Boiling of Water
,”
Experimental Heat Transfer Fluid Mechanics and Thermodynamics
,
M. D.
Kelleher
,
K. R.
Sreenivasan
,
R. K.
Shah
, and
Y.
Joshi
eds.,
Elsevier Sci. Publ
., Amsterdam, The Netherlands, pp.
1438
1443
.
35.
Chen
,
Y.
,
Cheng
,
P.
,
Wang
,
J.
, and
Yang
,
M.
,
1989
, “
Experimental Results of Subcooled and Low Quality of Film Boiling Heat Transfer of Water in Vertical Tubes at Moderate Pressure
,”
Proceedings of the 4th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics
,
Karlsruhe, Germany
, Oct. 10–13, Vol.
2
, pp.
1106
1110
.
36.
Swinnerton
,
D.
,
Hood
,
M. L.
, and
Pearson
,
K. G.
,
1988
, “
Steady State Post-Dryout Experiments at Low Quality and Medium Pressure Data Report
,” UKAEA Report No. AEEW-R2267.
37.
Swinnerton
,
D.
,
Pearson
,
K. G.
, and
Hood
,
M. L.
,
1988
, “
Steady State Post-Dryout Experiments at Low Quality and Medium Pressure
,” UKAEA Report No. AEEW-R2192.
38.
Savage
,
R. A.
,
Swinnerton
,
D.
, and
Pearson
,
K. G.
,
1989
, “
Heat Transfer and Voidage Measurements in Steady State Post-Dryout at Low Quality and Medium Pressure
,” UKAEA Report No. AEEW-R2486.
39.
Savage
,
R. A.
,
Archer
,
D.
, and
Swinnerton
,
D.
,
1992
, “
Heat Transfer and Voidage Measurements in Steady State Post-Dryout at Low Quality and High Pressure
,”
IChemE 3rd UK National Heat Transfer Conference
,
Birmingham
, Vol.
1
, Sep. 16–18, pp.
607
615
.
40.
Savage
,
R. A.
,
Archer
,
D.
, and
Swinnerton
,
D.
,
1993
, “
Flow Visualization, Heat Transfer, and Voidage Measurements in Steady-State Post-Dryout at High Pressure
,”
Proceedings of the 6th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics
,
Grenoble, France
, Vol.
2
, Oct. 5–8, pp.
1311
1318
.
41.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn
,
45
(
1
), pp.
5
32
.10.1023/A:1010933404324
42.
Friedman
,
J. H.
,
2001
, “
Greedy Function Approximation: A Gradient Boosting Machine
,”
Ann. Stat.
,
29
(
5
), pp.
1189
1232
.
43.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
, et al.,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn Res.
,
12
, pp.
2825
2830
.https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/
44.
Berenson
,
P. J.
,
1961
, “
Film Boiling Heat Transfer From a Horizontal Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
83
(
3
), pp.
351
356
.10.1115/1.3682280
45.
Salko
,
R.
,
Wysocki
,
A.
,
Avramova
,
M.
,
Toptan
,
A.
,
Porter
,
N.
,
Blyth
,
T.
,
Dances
,
C.
,
Gomez
,
A.
,
Jernigan
,
C.
, and
Kelly
,
J.
,
2017
,
CTF Theory Manual
,
The North Carolina State University
,
Raleigh, NC
.
46.
Kurul
,
N.
, and
Podowski
,
M.
,
1990
, “
Multi-Dimensional Effects in Forced Convection Subcooled Boiling
,”
Proceedings of the 9th International Heat Transfer Conference
,
Jerusalem, Israel
, Aug. 19–24, pp.
21
26
.10.1615/IHTC9.40
47.
Liu
,
Y.
,
Hu
,
R.
,
Zou
,
L.
, and
Nunez
,
D.
,
2022
, “
SAM-ML: Integrating Data-Driven Closure With Nuclear System Code SAM for Improved Modeling Capability
,”
Nucl. Eng. Des.
,
400
, p.
112059
.10.1016/j.nucengdes.2022.112059
48.
Hu
,
R.
,
Zou
,
L.
,
Hu
,
G.
,
Nunez
,
D.
,
Mui
,
T.
, and
Fei
,
T.
,
2021
, “
SAM Theory Manual
,”
Argonne National Lab. (ANL)
,
Argonne, IL
, Report No. ANL/NSE-17/4 Rev.1.
49.
Liu
,
Q.
,
Kelly
,
J.
, and
Sun
,
X.
,
2021
, “
Flow Regime Transition in the Post-CHF Flow Regimes Under Subcooled and Low-Quality Conditions
,”
Int. J. Multiphase Flow
,
136
, p.
103543
.10.1016/j.ijmultiphaseflow.2020.103543
You do not currently have access to this content.