Abstract

Structural flexibility has become a common feature in emerging microsystems with increasing heat fluxes. The thermal control of such applications is a significant challenge because of both structural and volumetric requirements, where standard cooling solutions are not applicable. Flexible polymer microlayers are a promising solution for the embedded cooling of such microsystems. In the present investigation, a flexible polydimethylsiloxane (PDMS) microgap is proposed and assessed in an effort to prove its viability for thermal management in the aforementioned applications. The analyzed polymer microgap features a dedicated vapor pathway design which is proven to assist in the efficient removal of vapor from the microsystem. The dielectric refrigerant HFE-7100 is used as the working fluid under flow boiling conditions, reporting on the two-phase flow regime, heat transfer, and pressure drop. In addition to experimental results, the numerical modeling of the relevant features of flow boiling is explored with the use of a mechanistic phase-change model that is proven to accurately predict the flow variables and constitutes a valuable tool in the analysis and design of such microsystems. The results from this study demonstrate that this approach is feasible for the removal of relatively high heat fluxes which are comparable to metallic-based or silicon microchannels, with the added advantage of structural flexibility while also providing a stable two-phase cooling mechanism.

References

1.
Bauer
,
S.
,
2013
, “
Flexible Electronics: Sophisticated Skin
,”
Nat. Mater.
,
12
(
10
), pp.
871
872
.10.1038/nmat3759
2.
Wolf
,
M. P.
,
Salieb-Beugelaar
,
G. B.
, and
Hunziker
,
P.
,
2018
, “
PDMS With Designer Functionalities—Properties, Modifications Strategies, and Applications
,”
Prog. Polym. Sci.
,
83
, pp.
97
134
.10.1016/j.progpolymsci.2018.06.001
3.
Peles
,
Y.
,
Koşar
,
A.
,
Mishra
,
C.
,
Kuo
,
C.-J.
, and
Schneider
,
B.
,
2005
, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3615
3627
.10.1016/j.ijheatmasstransfer.2005.03.017
4.
Alfieri
,
F.
,
Tiwari
,
M. K.
,
Zinovik
,
I.
,
Poulikakos
,
D.
,
Brunschwiler
,
T.
, and
Michel
,
B.
,
2010
, “
3D Integrated Water Cooling of a Composite Multilayer Stack of Chips
,”
ASME J. Heat Mass Trans.
,
132
(
12
), p.
121402
.10.1115/1.4002287
5.
Lorenzini
,
D.
,
Green
,
C.
,
Sarvey
,
T.
,
Zhang
,
X.
,
Hu
,
Y.
,
Fedorov
,
A.
,
Bakir
,
M.
, and
Joshi
,
Y.
,
2016
, “
Embedded Single Phase Microfluidic Thermal Management for Non-Uniform Heating and Hotspots Using Microgaps With Variable Pin Fin Clustering
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1359
1370
.10.1016/j.ijheatmasstransfer.2016.08.040
6.
Asrar
,
P.
,
Zhang
,
X.
,
Green
,
C. E.
,
Bakir
,
M.
, and
Joshi
,
Y.
,
2018
, “
Flow Boiling of R245fa in a Microgap With Integrated Staggered Circular Cylindrical Pin Fins
,”
Int. J. Heat Mass Transfer
,
121
, pp.
329
342
.10.1016/j.ijheatmasstransfer.2017.12.117
7.
Lorenzini
,
D.
, and
Joshi
,
Y.
,
2019
, “
Numerical Modeling and Experimental Validation of Two-Phase Microfluidic Cooling in Silicon Devices for Vertical Integration of Microelectronics
,”
Int. J. Heat Mass Transfer
,
138
, pp.
194
207
.10.1016/j.ijheatmasstransfer.2019.04.036
8.
Lorenzini
,
D.
, and
Joshi
,
Y.
,
2019
, “
Flow Boiling Heat Transfer in Silicon Microgaps With Multiple Hotspots and Variable Pin Fin Clustering
,”
Phys. Fluids
,
31
(
10
), p.
102002
.10.1063/1.5122209
9.
Korniliou
,
S.
,
Mackenzie-Dover
,
C.
,
Christy
,
J. R. E.
,
Harmand
,
S.
,
Walton
,
A. J.
, and
Sefiane
,
K.
,
2018
, “
Two-Dimensional Heat Transfer Coefficients With Simultaneous Flow Visualisations During Two-Phase Flow Boiling in a PDMS Microchannel
,”
Appl. Therm. Eng.
,
130
, pp.
624
636
.10.1016/j.applthermaleng.2017.11.003
10.
Bigham
,
S.
,
Fazeli
,
A.
, and
Moghaddam
,
S.
,
2017
, “
Physics of Microstructures Enhancement of Thin Film Evaporation Heat Transfer in Microchannels Flow Boiling
,”
Sci. Rep.
,
7
(
1
), p.
44745
.10.1038/srep44745
11.
Yang
,
F.
,
Li
,
W.
,
Dai
,
X.
, and
Li
,
C.
,
2016
, “
Flow Boiling Heat Transfer of HFE-7000 in Nanowire-Coated Microchannels
,”
Appl. Therm. Eng.
,
93
, pp.
260
268
.10.1016/j.applthermaleng.2015.09.097
12.
Plawsky
,
J.
,
Fedorov
,
A.
,
Garimella
,
S.
,
Ma
,
H.
,
Maroo
,
S.
,
Chen
,
L.
, and
Nam
,
Y.
,
2014
, “
Nano-and Microstructures for Thin-Film Evaporation - A Review
,”
Nanoscale Microscale Thermophysical Eng.
,
18
(
3
), pp.
251
269
.10.1080/15567265.2013.878419
13.
Yang
,
F.
,
Dai
,
X.
, and
Li
,
C.
,
2012
, “
High Frequency Microbubble-Switched Oscillations Modulated by Microfluidic Transistors
,”
Appl. Phys. Lett.
,
101
(
7
), p.
073509
.10.1063/1.4745782
14.
Li
,
W.
,
Ma
,
J.
,
Alam
,
T.
,
Yang
,
F.
,
Khan
,
J.
, and
Li
,
C.
,
2018
, “
Flow Boiling of HFE-7100 in Silicon Microchannels Integrated With Multiple Micronozzles and Reentry Micro-Cavities
,”
Int. J. Heat Mass Transfer
,
123
, pp.
354
366
.10.1016/j.ijheatmasstransfer.2018.02.108
15.
Li
,
C.
,
Wang
,
Z.
,
Wang
,
P.-I.
,
Peles
,
Y.
,
Koratkar
,
N.
, and
Peterson
,
G. P.
,
2008
, “
Nanostructured Copper Interfaces for Enhanced Boiling
,”
Nano-Micro Small
,
4
(
8
), pp.
1084
1088
.10.1002/smll.200700991
16.
Li
,
D.
,
Wu
,
G.
,
Wang
,
W.
,
Wang
,
Y.
,
Liu
,
D.
,
Zhang
,
D.
,
Chen
,
Y.
,
Peterson
,
G. P.
, and
Yang
,
R.
,
2012
, “
Enhancing Flow Boiling Heat Transfer in Microchannels for Thermal Management With Monolithically-Integrated Silicon Nanowires
,”
Nano Lett.
,
12
(
7
), pp.
3385
3390
.10.1021/nl300049f
17.
Fazeli, A., Bigham
,
S.
, , and
Moghaddam
,
S.
,
2016
, “
Microscale Layering of Liquid and Vapor Phases Within Microstructures for a New Generation Two-Phase Heat Sink
,”
Int. J. Heat Mass Transfer
,
95
, pp. 368–378.10.1016/j.ijheatmasstransfer.2015.12.005
18.
Dai
,
X.
,
Tran
,
L.
,
Yang
,
F.
,
Shi
,
B.
,
Yang
,
R.
,
Lee
,
Y. C.
, and
Li
,
C.
,
2011
, “
Characterization of Hybrid-Wicked Copper Heat Pipe
,”
ASME
Paper No. AJTEC2011-44088.10.1115/AJTEC2011-44088
19.
Dai
,
X.
,
Yang
,
F.
,
Yang
,
R.
,
Lee
,
Y. C.
, and
Li
,
C.
,
2013
, “
Micromembrane-Enhanced Capillary Evaporation
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1101
1108
.10.1016/j.ijheatmasstransfer.2013.05.030
20.
Peter
,
N. J.
,
Zhang
,
X.-S.
,
Chu
,
S.-G.
,
Zhu
,
F.-Y.
,
Seidel
,
H.
, and
Zhang
,
H.-X.
,
2012
, “
Tunable Wetting Behavior of Nanostructured Poly-(Dimethylsiloxane) by Plasma Combination Treatments
,”
Appl. Phys. Lett.
,
101
(
22
), p.
221601
.10.1063/1.4768808
21.
Chen
,
J.
,
Chen
,
D.
,
Xie
,
Y.
,
Chen
,
X.
,
Wang
,
K.
,
Cui
,
D.
,
Du
,
H.
, and
Wang
,
Z.
,
2015
, “
Bubble Generation and Mechanism in Polydimethylsiloxane Based Polymerase Chain Reaction Chip
,”
Appl. Phys. Lett.
,
106
(
5
), p.
053507
.10.1063/1.4907678
22.
Cho
,
S.
, and
Joshi
,
Y.
,
2019
, “
Thermal Performance of Microelectronic Substrates With Submillimeter Integrated Vapor Chamber
,”
ASME J. Heat Mass Trans.
,
141
(
5
), p.
042328
.10.1115/1.4042328
23.
Li
,
W.
,
Luo
,
K.
,
Li
,
C.
, and
Joshi
,
Y.
,
2022
, “
A Remarkable CHF of 345 W/cm2 is Achieved in a Wicked Microchannel Using HFE-7100
,”
Int. J. Heat Mass Transfer
,
187
, p.
122527
.10.1016/j.ijheatmasstransfer.2022.122527
24.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
9
.https://cir.nii.ac.jp/crid/1571698599500606336
25.
Sussman
,
M.
, and
Puckett
,
E. G.
,
2000
, “
A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
162
(
2
), pp.
301
337
.10.1006/jcph.2000.6537
26.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
27.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton–Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.10.1016/0021-9991(88)90002-2
28.
ANSYS, 2011, “ANSYS® FLUENT® Theory Guide,” November
2011
, Release 14.0.
29.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
30.
Youngs
,
D. L.
,
1982
, “
Time-Dependent Multi-Material Flow With Large Fluid Distortion
,”
Numerical Methods for Fluid Dynamics
,
K. W.
Morton
and
M. J.
Baines
, eds.,
Clarendon Press, Oxford
, UK, pp.
273
285
.
31.
Cammenga
,
H. K.
,
Schulze
,
F. W.
, and
Theuerl
,
W.
,
1977
, “
Vapor Pressure and Evaporation Coefficient of Water
,”
J. Chem. Eng. Data
,
22
(
2
), pp.
131
134
.10.1021/je60073a004
32.
Maa
,
J. R.
,
1967
, “
Evaporation Coefficient of Liquids
,”
Ind. Eng. Chem. Fundam.
,
6
(
4
), pp.
504
518
.10.1021/i160024a005
33.
Lee
,
W. H.
,
1980
, “
A Pressure Iteration Scheme for Two-Phase Flow Modelling
,”
Multiphase Transport Fundamentals, Reactor Safety Applications
,
T. M.
Verizoglu
, ed.,
Hemisphere Publishing
,
Washington, DC
.
34.
Lorenzini
,
D.
, and
Joshi
,
Y.
,
2018
, “
Computational Fluid Dynamics Modeling of Flow Boiling in Microchannels With Non-Uniform Heat Flux
,”
ASME J. Heat Mass Trans.
,
140
(
1
), p.
011501
.10.1115/1.4037343
35.
Lorenzini
,
D.
, and
Joshi
,
Y.
,
2017
, “
Comparison of the Volume of Fluid and CLSVOF Methods for the Assessment of Flow Boiling in Silicon Microgaps
,”
ASME J. Heat Mass Trans.
,
139
(
11
), p.
111506
.10.1115/1.4036682
36.
Lorenzini
,
D.
, and
Joshi
,
Y.
,
2016
, “
CFD Study of Flow Boiling in Silicon Microgaps With Staggered Pin Fins for the 3D-Stacking of ICs
,”
Proceedings of the 15th IEEE ITHERM
, Las Vegas, NV, May 31–June 3, pp.
766
773
.10.1109/ITHERM.2016.7517624
37.
Lorenzini-Gutierrez
,
L.
,
2019
, “
Computational Modeling and Experimental Validation of Single Phase and Boiling Flows in Microgap Cooling Layers
,”
Ph.D. thesis
,
Georgia Institute of Technology
, Atlanta, GA.https://smartech.gatech.edu/handle/1853/62664
38.
Joshi
,
Y. K.
, and
Li
,
W.
,
2020
, “
Wick Assisted Embedded Evaporative Cooling of Motors
,” US Patent Application US17/556,403.
You do not currently have access to this content.