Abstract

Numerical simulations are performed to deduce the effects of slip wall and orientation on entropy generation due to natural convection (NC) in a square cavity for Rayleigh number (Ra) = 105. The laterally insulated square cavity, heated at the bottom wall and cooled at the top wall, is subjected to various orientation angles (ϕ) and slip velocities characterized by the Knudsen number (Kn). The two components of entropy generation, i.e., entropy generation due to heat transfer (SΘ) and entropy generation due to fluid friction (SΨ), are separately investigated by varying the orientation from 0 deg to 120 deg in steps of 15 deg and Knudsen number from 0 (no-slip) to 1.5 in steps of 0.5. Evidence indicates that, for most cases considered, entropy generation due to fluid friction (SΨ) dominates the one due to heat transfer (SΘ). It is observed that the slip velocity on the isothermal walls (us,iso) has a strong influence on SΘ whereas the variations in SΨ are closely connected to the change in the rate of shear strain. Interestingly, the presence of corner vortices and the secondary circulations near the core of the cavity are also found to affect the variation in entropy generation. The existence of active zones of SΘ in the vicinity of isothermal walls and their elongation and migration while changing the orientation is another unique characteristic noticed in this study. A new parameter called maximum velocity ratio (MVR) is also proposed to highlight the variation in velocity components within the enclosure.

References

1.
De Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution
,”
Int. J. Numer. Methods Fluids
,
3
(
3
), pp.
249
264
.10.1002/fld.1650030305
2.
Wan
,
D. C.
,
Patnaik
,
B. S. V.
, and
Wei
,
G. W.
,
2001
, “
A New Benchmark Quality Solution for the Buoyancy-Driven Cavity by Discrete Singular Convolution
,”
Numer. Heat Transfer, Part B
,
40
, pp.
199
228
.10.1080/104077901752379620
3.
Markatos
,
N. C.
, and
Pericleous
,
K. A.
,
1984
, “
Laminar and Turbulent Natural Convection in an Enclosed Cavity
,”
Int. J. Heat Mass Transfer
,
27
(
5
), pp.
755
772
.10.1016/0017-9310(84)90145-5
4.
Basak
,
T.
, and
Roy
,
S.
,
2008
, “
Role of ‘Bejan’s Heatlines' in Heat Flow Visualization and Optimal Thermal Mixing for Differentially Heated Square Enclosures
,”
Int. J. Heat Mass Transfer
,
51
(
13–14
), pp.
3486
3503
.10.1016/j.ijheatmasstransfer.2007.10.033
5.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
(
4
), pp.
718
725
.10.1115/1.3451063
6.
Bejan
,
A.
,
1995
,
Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes
,
CRC Press
,
Boca Raton, FL
.10.1201/9781482239171
7.
Bejan
,
A.
,
1996
, “
Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite-Time Processes
,”
J. Appl. Phys.
,
79
(
3
), pp.
1191
1218
.10.1063/1.362674
8.
Andreozzi
,
A.
,
Auletta
,
A.
, and
Manca
,
O.
,
2006
, “
Entropy Generation in Natural Convection in a Symmetrically and Uniformly Heated Vertical Channel
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3221
3228
.10.1016/j.ijheatmasstransfer.2006.01.032
9.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2017
, “
Entropy Generation in Laminar and Turbulent Natural Convection Heat Transfer From Vertical Cylinder With Annular Fins
,”
ASME J. Heat Transfer
,
139
(
4
), p.
042501
.10.1115/1.4035355
10.
Yang
,
S.
, and
Ordonez
,
J. C.
,
2019
, “
Optimal Cooling Channel Layout in a Hot Enclosure Subject to Natural Convection
,”
ASME J. Heat Transfer
,
141
(
11
), p.
112502
.10.1115/1.4044510
11.
Zemani
,
F.
, and
Sabeur
,
A.
,
2022
, “
Computational Fluid Dynamics-Based Analysis of Entropy Generation on Laminar Natural Convection in Enclosures With Partitioned Walls and for Different Heating Positions
,”
ASME J. Heat Transfer
,
144
(
6
), p.
062601
.10.1115/1.4053938
12.
Narla
,
V.
,
Tripathi
,
D.
, and
Bég
,
O. A.
,
2020
, “
Analysis of Entropy Generation in Biomimetic Electroosmotic Nanofluid Pumping Through a Curved Channel With Joule Dissipation
,”
Therm. Sci. Eng. Prog.
,
15
, p.
100424
.10.1016/j.tsep.2019.100424
13.
Malekpour
,
A.
,
Karimi
,
N.
, and
Mehdizadeh
,
A.
,
2018
, “
Magnetohydrodynamics, Natural Convection, and Entropy Generation of Cuo–Water Nanofluid in an I-Shape Enclosure—A Numerical Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
6
), p.
061016
.10.1115/1.4041267
14.
Ade
,
S. S.
, and
Rathore
,
S. K.
,
2021
, “
Buoyancy Driven Flow, Heat Transfer, and Entropy Generation Characteristics for Different Heater Geometries Placed in Cryogenic Liquid: A Computational Fluid Dynamics Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
7
), p.
071001
.10.1115/1.4052347
15.
Yilbas
,
B. S.
,
Shuja
,
S. Z.
,
Gbadebo
,
S. A.
,
Al-Hamayel
,
H. I. A.
, and
Boran
,
K.
,
1998
, “
Natural Convection and Entropy Generation in a Square Cavity
,”
Int. J. Energy Res.
,
22
(
14
), pp.
1275
1290
.10.1002/(SICI)1099-114X(199811)22:14<1275::AID-ER453>3.0.CO;2-B
16.
Erbay
,
L. B.
,
Altaç
,
Z.
, and
Sülüs
,
B.
,
2003
, “
An Analysis of the Entropy Generation in a Square Enclosure
,”
Entropy
,
5
(
5
), pp.
496
505
.10.3390/e5050496
17.
Erbay
,
L. B.
,
Altaç
,
Z.
, and
Sülüş
,
B.
,
2004
, “
Entropy Generation in a Square Enclosure With Partial Heating From a Vertical Lateral Wall
,”
Heat Mass Transfer
,
40
(
12
), pp.
909
918
.10.1007/s00231-003-0497-x
18.
Magherbi
,
M.
,
Abbassi
,
H.
, and
Ben Brahim
,
A.
,
2003
, “
Entropy Generation at the Onset of Natural Convection
,”
Int. J. Heat Mass Transfer
,
46
(
18
), pp.
3441
3450
.10.1016/S0017-9310(03)00133-9
19.
Baytaş
,
A. C.
,
1997
, “
Optimization in an Inclined Enclosure for Minimum Entropy Generation in Natural Convection
,”
J. Non-Equilib. Thermodyn.
,
22
(
2
), pp.
145
155
.10.1515/jnet.1997.22.2.145
20.
Singh
,
A. K.
,
Roy
,
S.
, and
Basak
,
T.
,
2012
, “
Analysis of Entropy Generation Due to Natural Convection in Tilted Square Cavities
,”
Ind. Eng. Chem. Res.
,
51
(
40
), pp.
13300
13318
.10.1021/ie3013665
21.
Dagtekin
,
I.
,
Oztop
,
H. F.
, and
Bahloul
,
A.
,
2007
, “
Entropy Generation for Natural Convection in Γ-Shaped Enclosures
,”
Int. Commun. Heat Mass Transfer
,
34
(
4
), pp.
502
510
.10.1016/j.icheatmasstransfer.2007.01.003
22.
Mahmud
,
S.
, and
Islam
,
A.
,
2003
, “
Laminar Free Convection and Entropy Generation Inside an Inclined Wavy Enclosure
,”
Int. J. Therm. Sci.
,
42
(
11
), pp.
1003
1012
.10.1016/S1290-0729(03)00076-0
23.
Anandalakshmi
,
R.
, and
Basak
,
T.
,
2011
, “
Analysis of Entropy Generation Due to Natural Convection in Rhombic Enclosures
,”
Ind. Eng. Chem. Res.
,
50
(
23
), pp.
13169
13189
.10.1021/ie200184y
24.
Anandalakshmi
,
R.
, and
Basak
,
T.
,
2015
, “
Natural Convection in Rhombic Enclosures With Isothermally Heated Side or Bottom Wall: Entropy Generation Analysis
,”
Eur. J. Mech., B: Fluids
,
54
, pp.
27
44
.10.1016/j.euromechflu.2015.05.004
25.
Yıldız
,
Ç.
,
Yıldız
,
A. E.
,
Arıcı
,
M.
,
Azmi
,
N. A.
, and
Shahsavar
,
A.
,
2021
, “
Influence of Dome Shape on Flow Structure, Natural Convection and Entropy Generation in Enclosures at Different Inclinations: A Comparative Study
,”
Int. J. Mech. Sci.
,
197
, p.
106321
.10.1016/j.ijmecsci.2021.106321
26.
Watanabe
,
K.
,
Udagawa
,
Y.
, and
Udagawa
,
H.
,
1999
, “
Drag Reduction of Newtonian Fluid in a Circular Pipe With a Highly Water-Repellent Wall
,”
J. Fluid Mech.
,
381
, pp.
225
238
.10.1017/S0022112098003747
27.
Onda
,
T.
,
Shibuichi
,
S.
,
Satoh
,
N.
, and
Tsujii
,
K.
,
1996
, “
Super-Water-Repellent Fractal Surfaces
,”
Langmuir
,
12
(
9
), pp.
2125
2127
.10.1021/la950418o
28.
Legendre
,
D.
,
Lauga
,
E.
, and
Magnaudet
,
J.
,
2009
, “
Influence of Slip on the Dynamics of Two-Dimensional Wakes
,”
J. Fluid Mech.
,
633
, pp.
437
447
.10.1017/S0022112009008015
29.
Wang
,
C. Y.
, and
Ng
,
C.-O.
,
2013
, “
Natural Convection in a Vertical Slit Microchannel With Superhydrophobic Slip and Temperature Jump
,”
ASME J. Heat Transfer
,
136
(
3
), p.
034502
.10.1115/1.4025822
30.
Kaluri
,
R. S.
, and
Basak
,
T.
,
2010
, “
Entropy Generation Minimization Versus Thermal Mixing Due to Natural Convection in Differentially and Discretely Heated Square Cavities
,”
Numer. Heat Transfer, Part A
,
58
(
6
), pp.
475
504
.10.1080/10407782.2010.511982
31.
Soleimani
,
S.
,
Qajarjazi
,
A.
,
Bararnia
,
H.
,
Barari
,
A.
, and
Domairry
,
G.
,
2011
, “
Entropy Generation Due to Natural Convection in a Partially Heated Cavity by Local RBF-DQ Method
,”
Meccanica
,
46
(
5
), pp.
1023
1033
.10.1007/s11012-010-9358-0
32.
Kaluri
,
R. S.
, and
Basak
,
T.
,
2011
, “
Analysis of Entropy Generation for Distributed Heating in Processing of Materials by Thermal Convection
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2578
2594
.10.1016/j.ijheatmasstransfer.2011.02.003
33.
Ilis
,
G. G.
,
Mobedi
,
M.
, and
Sunden
,
B.
,
2008
, “
Effect of Aspect Ratio on Entropy Generation in a Rectangular Cavity With Differentially Heated Vertical Walls
,”
Int. Commun. Heat Mass Transfer
,
35
(
6
), pp.
696
703
.10.1016/j.icheatmasstransfer.2008.02.002
34.
Oliveski
,
R. D. C.
,
Macagnan
,
M. H.
, and
Copetti
,
J. B.
,
2009
, “
Entropy Generation and Natural Convection in Rectangular Cavities
,”
Appl. Therm. Eng.
,
29
(
8–9
), pp.
1417
1425
.10.1016/j.applthermaleng.2008.07.012
35.
Shuja
,
S. Z.
,
Yilbas
,
B. S.
, and
Al-Qahtani
,
H.
,
2020
, “
Influence of Hydrophobic Fin Configuration in Thermal System in Relation to Electronic Device Cooling Applications
,”
Energies
,
13
(
7
), p.
1631
.10.3390/en13071631
36.
Lauga
,
E.
, and
Stone
,
H. A.
,
2003
, “
Effective Slip in Pressure-Driven Stokes Flow
,”
J. Fluid Mech.
,
489
, pp.
55
77
.10.1017/S0022112003004695
37.
You
,
D.
, and
Moin
,
P.
,
2007
, “
Effects of Hydrophobic Surfaces on the Drag and Lift of a Circular Cylinder
,”
Phys. Fluids
,
19
(
8
), p.
081701
.10.1063/1.2756578
38.
Guermond
,
J.
,
Minev
,
P.
, and
Shen
,
J.
,
2006
, “
An Overview of Projection Methods for Incompressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
44–47
), pp.
6011
6045
.10.1016/j.cma.2005.10.010
39.
Weinan
,
E.
, and
Jian-Guo
,
L.
,
1995
, “
Projection Method I: Convergence and Numerical Boundary Layers
,”
SIAM J. Numer. Anal.
,
32
(
4
), pp.
1017
1057
.10.1137/0732047
40.
Ajith Kumar
,
S.
,
Mathur
,
M.
,
Sameen
,
A.
, and
Anil Lal
,
S.
,
2016
, “
Effects of Prandtl Number on the Laminar Cross Flow Past a Heated Cylinder
,”
Phys. Fluids
,
28
(
11
), p.
113603
.10.1063/1.4966937
41.
Ajith Kumar
,
S.
,
Anil Lal
,
S.
, and
Sameen
,
A.
,
2016
, “
Flow Past a Moderately Heated Horizontal Cylinder at Low Reynolds Number
,”
Proc. Inst. Mech. Eng., Part G
,
230
(
7
), pp.
1224
1239
.10.1177/0954410015606166
42.
Ajith Kumar
,
S.
, and
Anil Lal
,
S.
,
2021
, “
Effects of Prandtl Number on Three Dimensional Coherent Structures in the Wake Behind a Heated Cylinder
,”
J. Appl. Fluid Mech.
,
14
(
2
), pp.
515
526
.10.47176/jafm.14.02.31700
43.
Tang
,
L. Q.
, and
Tsang
,
T. T. H.
,
1993
, “
A Least-Squares Finite Element Method for Time-Dependent Incompressible Flows With Thermal Convection
,”
Int. J. Numer. Methods Fluids
,
17
(
4
), pp.
271
289
.10.1002/fld.1650170402
44.
Hortmann
,
M.
,
Peric
,
M.
, and
Scheuerer
,
G.
,
1990
, “
Finite Volume Multigrid Prediction of Laminar Natural Convection: Bench-Mark Solutions
,”
Int. J. Numer. Methods Fluids
,
11
(
2
), pp.
189
207
.10.1002/fld.1650110206
45.
Quere
,
P. L.
, and
de Roquefort
,
T. A.
,
1985
, “
Computation of Natural Convection in Two-Dimensional Cavities With Chebyshev Polynomials
,”
J. Comput. Phys.
,
57
, pp.
210
228
.10.1016/0021-9991(85)90043-9
46.
Batchelor
,
G. K.
,
2000
,
An Introduction to Fluid Dynamics
(Cambridge Mathematical Library),
Cambridge University Press
, Cambridge, UK. 10.1017/CBO9780511800955
You do not currently have access to this content.