Abstract

The chip-size integrated double-layer microchannels (DLMCs) and multilayer microchannels (MLMCs) are investigated to optimize the thermal performance of three-dimensional integrated circuits (3D ICs). The chip-size integrated DLMCs without a heat spreader and a heat sink reduce the hotspot temperature by almost 15 K for a nominal 3D IC structure. Meanwhile, the size is significantly smaller than the copper heat sinks, and the weight of the chip-size integrated DLMC is reduced by 99.9%. Furthermore, two chip-size integrated DLMCs lower the hotspot temperature by another 6.77 K compared with utilizing just one integrated DLMC on top of the chip structure. The results also show that the MLMCs have a great effect on reducing the hotspot temperature. We have established that the optimal layout is four layers. The hotspot temperature is reduced by 21 K and 102 times lighter in weight compared to nominal 3D IC structure. The proposed structure and results presented in this study pave the way for major innovations in resolving the thermal issues for the 3D ICs.

References

1.
Topol
,
A. W.
,
Tulipe
,
D. C. L.
,
Shi
,
L.
,
Frank
,
D. J.
,
Bernstein
,
K.
,
Steen
,
S. E.
,
Kumar
,
A.
, et al.,
2006
, “
Three-Dimensional Integrated Circuits
,”
IBM J. Res. Dev.
,
50
(
4.5
), pp.
491
506
.10.1147/rd.504.0491
2.
Jenkins
,
K. A.
, and
Franch
,
R. L.
,
2003
, “
Impact of Self-Heating on Digital SOI and Strained-Silicon CMOS Circuits
,”
IEEE International SOI Conference
, Newport Beach, CA, USA, Sept. 29–Oct. 2, pp.
161
163
.
3.
Banerjee
,
K.
,
Souri
,
S. J.
,
Kapur
,
P.
, and
Saraswat
,
K. C.
,
2001
, “
3-D ICs: A Novel Chip Design for Improving Deep-Submicrometer Interconnect Performance and Systems-on-Chip Integration
,”
Proc. IEEE
,
89
(
5
), pp.
602
633
.10.1109/5.929647
4.
Tavakkoli
,
F.
,
Ebrahimi
,
S.
,
Wang
,
S.
, and
Vafai
,
K.
,
2016
, “
Analysis of Critical Thermal Issues in 3D Integrated Circuits
,”
Int. J. Heat Mass Transfer
,
97
, pp.
337
352
.10.1016/j.ijheatmasstransfer.2016.02.010
5.
Tavakkoli
,
F.
,
Ebrahimi
,
S.
,
Wang
,
S.
, and
Vafai
,
K.
,
2016
, “
Thermophysical and Geometrical Effects on the Thermal Performance and Optimization of a Three-Dimensional Integrated Circuit
,”
ASME J. Heat Transfer–Trans. ASME
,
138
(
8
), p.
082101
.10.1115/1.4033138
6.
Wang
,
C.
,
Huang
,
X. J.
, and
Vafai
,
K.
,
2021
, “
Analysis of Hotspots and Cooling Strategy for Multilayer Three-Dimensional Integrated Circuits
,”
Appl. Therm. Eng.
,
186
, p.
116336
.10.1016/j.applthermaleng.2020.116336
7.
Tavakoli
,
A.
,
Salimpour
,
M. R.
, and
Vafai
,
K.
,
2021
, “
Geometrical Optimization of Boron Arsenide Inserts Embedded in a Heat Spreader to Improve Its Cooling Performance for Three Dimensional Integrated Circuits
,”
Numer. Heat Transfer, Part A
,
80
(
8
), pp.
389
410
.10.1080/10407782.2021.1947626
8.
Tavakoli
,
A.
, and
Vafai
,
K.
,
2021
, “
Design and Optimization of a Composite Heat Spreader to Improve the Thermal Management of a 3d Integrated Circuit
,”
ASME J. Heat Transfer–Trans. ASME
,
143
(
10
), p.
102901
.10.1115/1.4050922
9.
Lu
,
S.
, and
Vafai
,
K.
,
2022
, “
Optimization of the Thermal Performance of Three-Dimensional Integrated Circuits (3D ICs) Utilizing Rectangular-Shaped and Disk-Shaped Heat Pipes
,”
ASME J. Heat Transfer–Trans. ASME
,
144
(
6
), p.
061901
.10.1115/1.4053803
10.
Kadam
,
S. T.
, and
Kumar
,
R.
,
2014
, “
Twenty First Century Cooling Solution: Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
85
, pp.
73
92
.10.1016/j.ijthermalsci.2014.06.013
11.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
12.
Sekar
,
D.
,
King
,
C.
,
Dang
,
B.
,
Spencer
,
T.
,
Thacker
,
H.
,
Joseph
,
P
, et al.,
2018
, “
A 3-D IC Technology With Integrated Microchannel Cooling
,”
Proceedings of International Interconnect Technology Conference
, Burlingame, CA, USA, June 01–04, pp.
13
15
.
13.
Brunschwiler
,
T.
,
Michel
,
B.
,
Rothuizen
,
H.
,
Kloter
,
U.
,
Wunderle
,
B.
,
Oppermann
,
H.
, and
Reichl
,
H.
,
2008
, “
Forced Convective Interlayer Cooling in Vertically Integrated Packages
,”
Proceedings of Intersociety Conference on Thermal Thermomechanical Phenomena in Electronic Systems
, Orlando, FL, May 28–31, pp.
1114
1125
.
14.
Mizunuma
,
H.
,
Lu
,
Y. C.
, and
Yang
,
C. L.
,
2011
, “
Thermal Modeling and Analysis for 3-D ICs With Integrated Microchannel Cooling
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
,
30
(
9
), pp.
1293
1306
.10.1109/TCAD.2011.2144596
15.
Lu
,
T.
,
Zhang
,
F.
, and
Jin
,
J. M.
,
2016
, “
Multiphysics Simulation of 3-D ICs With Integrated Microchannel Cooling
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
6
(
11
), pp.
1620
1629
.10.1109/TCPMT.2016.2605691
16.
Feng
,
Z.
, and
Li
,
P.
,
2013
, “
Fast Thermal Analysis on GPU for 3D ICs With Integrated Microchannel Cooling
,”
IEEE Trans. VLSI Syst.
,
21
(
8
), pp.
1526
1539
.10.1109/TVLSI.2012.2211050
17.
Vafai
,
K.
, and
Zhu
,
L.
,
1999
, “
Analysis of Two-Layered Micro-Channel Heat Sink Concept in Electronic Cooling
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2287
2297
.10.1016/S0017-9310(98)00017-9
18.
Vafai
,
K.
, and
Zhu
,
L.
,
2002
, “
Two-Layered Micro Channel Heat Sink, Devices and Systems Incorporating Same
,” U.S. Patent No. 6,457,515.
19.
Vafai
,
K.
, and
Zhu
,
L.
,
2004
, “
Multi-Layered Micro-Channel Heat Sink, Devices and Systems Incorporating Same
,” U.S. Patent No. 6,675,875.
20.
Lu
,
S.
, and
Vafai
,
K.
,
2016
, “
A Comparative Analysis of Innovative Microchannel Heat Sinks for Electronic Cooling
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
271
284
.10.1016/j.icheatmasstransfer.2016.04.024
21.
Xie
,
G.
,
Chen
,
Z.
,
Sunden
,
B.
, and
Zhang
,
W.
,
2013
, “
Comparative Study of the Flow and Thermal Performance of Liquid-Cooling Parallel-Flow and Counter-Flow Double-Layer Wavy Microchannel Heat Sinks
,”
Numer. Heat Transfer, Part A
,
64
(
1
), pp.
30
55
.10.1080/10407782.2013.773811
22.
Xie
,
G.
,
Chen
,
Z.
,
Sunden
,
B.
, and
Zhang
,
W.
,
2013
, “
Numerical Predictions of the Flow and Thermal Performance of Water-Cooled Single-Layer and Double-Layer Wavy Microchannel Heat Sinks
,”
Numer. Heat Transfer, Part A
,
63
(
3
), pp.
201
225
.10.1080/10407782.2013.730445
23.
Zhang
,
F.
,
Sundén
,
B.
,
Zhang
,
W.
, and
Xie
,
G.
,
2015
, “
Constructal Parallel-Flow and Counterflow Microchannel Heat Sinks With Bifurcations
,”
Numer. Heat Transfer, Part A
,
68
(
10
), pp.
1087
1105
.10.1080/10407782.2015.1023148
24.
Shen
,
H.
,
Xie
,
G.
, and
Wang
,
C. C.
,
2019
, “
The Numerical Simulation With Staggered Alternation Locations and Multi-Flow Directions on the Thermal Performance of Double-Layer Microchannel Heat Sinks
,”
Appl. Therm. Eng.
,
163
, p.
114332
.10.1016/j.applthermaleng.2019.114332
25.
Lee
,
J.
, and
Mudawar
,
I.
,
2008
, “
Fluid Flow and Heat Transfer Characteristics of Low Temperature Two-Phase Micro-Channel Heat sinks-Part 1: Experimental Methods and Flow Visualization Results
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4315
4326
.10.1016/j.ijheatmasstransfer.2008.02.012
26.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks––I. Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2755
2771
.10.1016/S0017-9310(03)00041-3
27.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2045
2059
.10.1016/j.ijheatmasstransfer.2003.12.006
28.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels
,”
ASME J. Heat Transfer–Trans. ASME
,
126
(
4
), pp.
518
526
.10.1115/1.1778187
29.
Lee
,
J.
, and
Mudawar
,
I.
,
2005
, “
Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications: Part II—Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
,
48
(
5
), pp.
928
940
.10.1016/j.ijheatmasstransfer.2004.09.018
30.
Sobierska
,
E.
,
Kulenovic
,
R.
,
Mertz
,
R.
, and
Groll
,
M.
,
2006
, “
Experimental Results of Flow Boiling of Water in a Vertical Microchannel
,”
Exp. Therm. Fluid Sci.
,
31
(
2
), pp.
111
119
.10.1016/j.expthermflusci.2006.03.022
31.
Balasubramanian
,
K.
,
Lee
,
P. S.
,
Jin
,
L. W.
,
Chou
,
S. K.
,
Teo
,
C. J.
, and
Gao
,
S.
,
2011
, “
Experimental Investigations of Flow Boiling Heat Transfer and Pressure Drop in Straight and Expanding Microchannels – a Comparative Study
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
241
2421
.10.1016/j.ijthermalsci.2011.07.007
32.
Lee
,
S.
,
Choi
,
S. U.-S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer–Trans. ASME
,
121
(
2
), pp.
280
289
.10.1115/1.2825978
33.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5181
5188
.10.1016/j.ijheatmasstransfer.2004.07.012
34.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.10.1080/08916159808946559
35.
Lee
,
J.
, and
Mudawar
,
I.
,
2007
, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
452
463
.10.1016/j.ijheatmasstransfer.2006.08.001
You do not currently have access to this content.