Abstract

This article focuses on passive systems that are used in energy and thermal-fluid applications. These passive systems do not have moving parts and are reliable and cost-effective. Fluid motion in these passive devices could be driven by capillary force, gravity, osmotic pressure, and/or concentration gradient. The fundamental mechanisms and limitations of transport phenomena for passive systems are highlighted, followed by their applications in heat pipes, fuel cells, thermal energy storage, and desalination systems. The capabilities of the passive systems are limited by the balance between the driving force and transport resistance. Based on the fundamental understanding of fluid flow and phase change in passive systems, this study proposes associated transport phenomena and quantitative criteria to determine the maximum heat transfer rate, the transport distance, and minimum pore size of wick structures (when relevant) in these passive devices. This article concludes with the discussion of challenges and future opportunities of passive systems.

References

1.
Balcomb
,
J. D.
,
Hedstrom
,
J. C.
, and
McFarland
,
R. D.
,
1977
, “
Simulation Analysis of Passive Solar Heated Buildings—Preliminary Results
,”
Sol. Energy
,
19
(
3
), pp.
277
282
.10.1016/0038-092X(77)90071-8
2.
Jiang
,
J.
, and
Yu
,
X.
,
2012
, “
Fault-Tolerant Control Systems: A Comparative Study Between Active and Passive Approaches
,”
Annu. Rev. Control
,
36
(
1
), pp.
60
72
.10.1016/j.arcontrol.2012.03.005
3.
Faghri
,
A.
,
Zhang
,
Y.
, and
Howell
,
J.
,
2010
,
Advanced Heat and Mass Transfer
,
Global Digital Press
,
Columbia, MO
.
4.
Faghri
,
A.
, and
Zhang
,
Y.
,
2020
,
Fundamentals of Multiphase Heat Transfer and Flow
,
Springer
, Amsterdam, The Netherlands.
5.
Naghashnejad
,
M.
,
Shabgard
,
H.
, and
Bergman
,
T. L.
,
2022
, “
A Novel Computational Model of the Dynamic Response of the Evaporating Liquid-Vapor Interface in a Capillary Channel
,”
Int. J. Heat Mass Transfer
,
186
, p.
122496
.10.1016/j.ijheatmasstransfer.2021.122496
6.
Naghashnejad
,
M.
,
Shabgard
,
H.
, and
Bergman
,
T.
,
2021
, “
Computational Simulation of Spontaneous Liquid Penetration and Depression Between Vertical Parallel Plates
,”
ASME J. Fluids Eng.
,
143
(
5
), p.
051302
.10.1115/1.4049683
7.
Faghri
,
A.
,
2016
,
Heat Pipe Science and Technology
,
Global Digital Press
, Columbia, MO.
8.
Shabgard
,
H.
,
Rahimi
,
H.
,
Naghashnejad
,
M.
,
Acosta
,
P. M.
,
Sharifi
,
N.
,
Mahdavi
,
M.
, and
Faghri
,
A.
,
2022
, “
Thermal Energy Storage in Desalination Systems: State of the Art, Challenges and Opportunities
,”
J. Energy Storage
,
52
, p.
104799
.10.1016/j.est.2022.104799
9.
McCutcheon
,
J. R.
, and
Elimelech
,
M.
,
2006
, “
Influence of Concentrative and Dilutive Internal Concentration Polarization on Flux Behavior in Forward Osmosis
,”
J. Memb. Sci.
,
284
(
1–2
), pp.
237
247
.10.1016/j.memsci.2006.07.049
10.
Suh
,
C.
, and
Lee
,
S.
,
2013
, “
Modeling Reverse Draw Solute Flux in Forward Osmosis With External Concentration Polarization in Both Sides of the Draw and Feed Solution
,”
J. Memb. Sci.
,
427
, pp.
365
374
.10.1016/j.memsci.2012.08.033
11.
Faghri
,
A.
, and
Bergman
,
T. L.
,
2017
, “
Review of Advances in Heat Pipe Analysis and Numerical Simulation
,”
Advances in Numerical Heat Transfer
,
W. J.
Minkowycz
,
E. M.
Sparrow
,
J. P.
Abraham
, and
J. M.
Gorman
, eds.,
CRC Press
, Boca Raton, FL, pp.
173
212
.
12.
Shabgard
,
H.
,
Allen
,
M. J.
,
Sharifi
,
N.
,
Benn
,
S. P.
,
Faghri
,
A.
, and
Bergman
,
T. L.
,
2015
, “
Heat Pipe Heat Exchangers and Heat Sinks: Opportunities, Challenges, Applications, Analysis, and State of the Art
,”
Int. J. Heat Mass Transfer
,
89
, pp.
138
158
.10.1016/j.ijheatmasstransfer.2015.05.020
13.
Shabgard
,
H.
,
Faghri
,
A.
,
Bergman
,
T. L.
, and
Andraka
,
C. E.
,
2013
, “
Numerical Simulation of Heat Pipe-Assisted Latent Heat Thermal Energy Storage Unit for Dish-Stirling Systems
,”
ASME J. Sol. Energy Eng.
,
136
(
2
), p.
021025
.10.1115/1.4025973
14.
Petrucci
,
M.
, and
Faghri
,
A.
,
2018
, “
Heat Pipe Turbine Vane Integration in Gas Turbine Engines
,”
Front. Heat Mass Transfer
,
11
, p.
37
.
15.
Shah
,
R. K.
, and
Bhatti
,
M. S.
,
1987
, “
Laminar Convective Heat Transfer in Ducts
,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakac
,
R. K.
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
.
16.
Guo
,
Z.
, and
Faghri
,
A.
,
2007
, “
Vapor Feed Direct Methanol Fuel Cells With Passive Thermal-Fluids Management System
,”
J. Power Sources
,
167
(
2
), pp.
378
390
.10.1016/j.jpowsour.2007.02.024
17.
Rice
,
J.
, and
Faghri
,
A.
,
2006
, “
A Transient, Multi-Phase and Multi-Component Model of a New Passive DMFC
,”
Int. J. Heat Mass Transfer
,
49
(
25–26
), pp.
4804
4820
.10.1016/j.ijheatmasstransfer.2006.06.003
18.
Bahrami
,
H.
, and
Faghri
,
A.
,
2013
, “
Review and Advances of Direct Methanol Fuel Cells: Part II: Modeling and Numerical Simulation
,”
J Power Sources
,
230
, pp.
303
320
.10.1016/j.jpowsour.2012.12.009
19.
Li
,
X.
, and
Faghri
,
A.
,
2013
, “
Review and Advances of Direct Methanol Fuel Cells (DMFCs) Part I: Design, Fabrication, and Testing With High Concentration Methanol Solutions
,”
J. Power Sources
,
226
, pp.
223
240
.10.1016/j.jpowsour.2012.10.061
20.
Faghri
,
A.
, and
Guo
,
Z.
,
2005
, “
Challenges and Opportunities of Thermal Management Issues Related to Fuel Cell Technology and Modeling
,”
Int. J. Heat Mass Transfer
,
48
(
19–20
), pp.
3891
3920
.10.1016/j.ijheatmasstransfer.2005.04.014
21.
Kamarudin
,
S. K.
,
Achmad
,
F.
, and
Daud
,
W. R. W.
,
2009
, “
Overview on the Application of Direct Methanol Fuel Cell (DMFC) for Portable Electronic Devices
,”
Int. J. Hydrogen Energy
,
34
(
16
), pp.
6902
6916
.10.1016/j.ijhydene.2009.06.013
22.
Miao
,
Z.
,
Hu
,
B.
,
He
,
Y.-L.
,
Xu
,
J.
, and
Li
,
X.
,
2021
, “
A Liquid–Vapor Two-Phase Model of Direct Methanol Fuel Cells With Platinum Group Metal-Free Cathode Catalyst
,”
J. Electrochem Energy Convers. Storage
,
18
(
4
), p.
040904
.10.1115/1.4051209
23.
Metzger
,
N.
,
Sekar
,
A.
,
Li
,
J.
, and
Li
,
X.
,
2022
, “
Understanding Carbon Dioxide Transfer in Direct Methanol Fuel Cells Using a Pore-Scale Model
,”
J. Electrochem. Energy Convers. Storage
,
19
(
1
), p.
010904
.10.1115/1.4050369
24.
Kozbial
,
A.
,
Trouba
,
C.
,
Liu
,
H.
, and
Li
,
L.
,
2017
, “
Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles
,”
Langmuir
,
33
(
4
), pp.
959
967
.10.1021/acs.langmuir.6b04193
25.
Goswami
,
S.
,
Klaus
,
S.
, and
Benziger
,
J.
,
2008
, “
Wetting and Absorption of Water Drops on Nafion Films
,”
Langmuir
,
24
(
16
), pp.
8627
8633
.10.1021/la800799a
26.
Duan
,
Q.
,
Wang
,
H.
, and
Benziger
,
J.
,
2012
, “
Transport of Liquid Water Through Nafion Membranes
,”
J. Memb. Sci.
,
392–393
, pp.
88
94
.10.1016/j.memsci.2011.12.004
27.
Faghri
,
A.
,
Chen
,
M. M.
, and
Morgan
,
M.
,
1989
, “
Heat Transfer Characteristics in Two-Phase Closed Conventional and Concentric Annular Thermosyphons
,”
ASME J. Heat Transfer-Trans. ASME
,
111
(
3
), pp.
611
618
.10.1115/1.3250726
28.
Shiraishi
,
M.
,
Yoneya
,
M.
, and
Yabe
,
A.
,
1984
, “
Visual Study of Operating Limit in the Two-Phase Thermosyphon
,”
Proc. 5th Int. Heat Pipe Conf.
, Tsukuba, Japan, May 14–18, pp.
11
17
.
29.
Gorbis
,
Z. R.
, and
Savchenkov
,
G. A.
,
1976
, “
Low Temperature Two-Phase Closed Thermosyphon Investigation
,”
Proc. 2nd Int. Heat Pipe Conf.
, Italy, Bologna, Mar. 31–Apr. 2, pp.
37
45
.
30.
Shabgard
,
H.
,
Song
,
L.
, and
Zhu
,
W.
,
2018
, “
Heat Transfer and Exergy Analysis of a Novel Solar-Powered Integrated Heating, Cooling, and Hot Water System With Latent Heat Thermal Energy Storage
,”
Energy Convers. Manag.
,
175
, pp.
121
131
.10.1016/j.enconman.2018.08.105
31.
Kaushal
,
A.
,
2010
, “
Solar Stills: A Review
,”
Renew. Sustain Energy Rev.
,
14
(
1
), pp.
446
453
.10.1016/j.rser.2009.05.011
32.
Xiao
,
G.
,
Wang
,
X.
,
Ni
,
M.
,
Wang
,
F.
,
Zhu
,
W.
,
Luo
,
Z.
, and
Cen
,
K.
,
2013
, “
A Review on Solar Stills for Brine Desalination
,”
Appl. Energy
,
103
, pp.
642
652
.10.1016/j.apenergy.2012.10.029
33.
Cooper
,
P. I.
,
1973
, “
The Maximum Efficiency of Single-Effect Solar Stills
,”
Sol. Energy
,
15
(
3
), pp.
205
217
.10.1016/0038-092X(73)90085-6
34.
Nayar
,
K. G.
,
Sharqawy
,
M. H.
,
Banchik
,
L. D.
, and
Lienhard
,
J. H.
, V
,
2016
, “
Thermophysical Properties of Seawater: A Review and New Correlations That Include Pressure Dependence
,”
Desalination
,
390
, pp.
1
24
.10.1016/j.desal.2016.02.024
35.
Sharqawy
,
M. H.
,
Lienhard
,
V.
,
J. H.
, and
Zubair
,
S. M.
,
2010
, “
Thermophysical Properties of Seawater: A Review of Existing Correlations and Data
,”
Desalin. Water Treat.
,
16
(
1–3
), pp.
354
380
.10.5004/dwt.2010.1079
36.
Dunkle
,
R. V.
,
1961
, “
Solar Water Distillation, the Roof Type Still and Multiple Effect Diffusion
,”
International Heal Transfer Conference. Part V, International Developments in Heat Transfer
,
AMSE
,
Boulder, CO
, pp.
895
902
.
37.
Tiwari
,
G. N.
,
2002
,
Solar Energy: Fundamentals, Design, Modelling and Applications
,
Alpha Science International Ltd
, Pangbourne,
UK
.
38.
Elashmawy
,
M.
,
2020
, “
Improving the Performance of a Parabolic Concentrator Solar Tracking-Tubular Solar Still (PCST-TSS) Using Gravel as a Sensible Heat Storage Material
,”
Desalination
,
473
, p.
114182
.10.1016/j.desal.2019.114182
39.
Elbar
,
A. R. A.
, and
Hassan
,
H.
,
2019
, “
Experimental Investigation on the Impact of Thermal Energy Storage on the Solar Still Performance Coupled With PV Module Via New Integration
,”
Sol Energy
,
184
, pp.
584
593
.10.1016/j.solener.2019.04.042
40.
Khrustalev
,
D.
, and
Faghri
,
A.
,
1996
, “
Estimation of the Maximum Heat Flux in the Inverted Meniscus Type Evaporator of a Flat Miniature Heat Pipe
,”
Int. J. Heat Mass Transfer
,
39
(
9
), pp.
1899
1909
.10.1016/0017-9310(95)00270-7
41.
Rupp
,
A. I. K. S.
, and
Gruber
,
P.
,
2021
, “
Bio-Inspired Evaporation From Shaped Interfaces: An Experimental Study
,”
Bioinspir. Biomim.
,
16
(
4
), p.
045001
.10.1088/1748-3190/abdd9e
42.
Wang
,
L.
,
Wang
,
H.
,
Liu
,
C.
,
Xu
,
Y.
,
Ma
,
S.
,
Zhuang
,
Y.
,
Zhang
,
Q.
,
Yang
,
H.
, and
Xu
,
W.
,
2020
, “
Bioinspired Cellulose Membrane With Hierarchically Porous Structure for Highly Efficient Solar Steam Generation
,”
Cellulose
,
27
(
14
), pp.
8255
8267
.10.1007/s10570-020-03359-4
43.
Wu
,
Q.
,
Zhang
,
X.
,
Lv
,
Y.
,
Lin
,
L.
,
Liu
,
Y.
, and
Zhou
,
X.
,
2018
, “
Bio-Inspired Multiscale-Pore-Network Structured Carbon Felt With Enhanced Mass Transfer and Activity for Vanadium Redox Flow Batteries
,”
J. Mater. Chem. A
,
6
(
41
), pp.
20347
20355
.10.1039/C8TA06445H
44.
Yang
,
C.
,
Song
,
C.
,
Shang
,
W.
,
Tao
,
P.
, and
Deng
,
T.
,
2015
, “
Flexible Heat Pipes With Integrated Bioinspired Design
,”
Prog. Nat. Sci. Mater. Int.
,
25
(
1
), pp.
51
57
.10.1016/j.pnsc.2015.01.011
45.
Xu
,
Y.
,
Guo
,
W.
,
Zhou
,
S.
,
Yi
,
H.
,
Yang
,
G.
,
Mei
,
S.
,
Zhu
,
K.
,
Wu
,
H.
, and
Li
,
Z.
,
2022
, “
Bioinspired Perspiration-Wicking Electronic Skins for Comfortable and Reliable Multimodal Health Monitoring
,”
Adv. Funct. Mater.
,
32
(
23
), p.
2200961
.10.1002/adfm.202200961
46.
Luo
,
Y. Q.
,
Song
,
F.
,
Xu
,
C.
,
Wang
,
X. L.
, and
Wang
,
Y. Z.
,
2020
, “
Bioinspired Fabrication of Asymmetric Wood Materials for Directional Liquid Manipulation and Transport
,”
Chem. Eng. J.
,
383
, p.
123168
.10.1016/j.cej.2019.123168
47.
California Department of Parks and Recreation,
2022
, “Survivors Through Time,” https://www.parks.ca.gov/?page_id=24728
48.
Tyree
,
M. T.
,
2003
, “
Plant Hydraulics: The Ascent of Water
,”
Nature
,
423
(
6943
), pp.
923
923
.10.1038/423923a
49.
California Science Weekly
,
2022
, “
Why Are California's Redwoods and Sequoias so Big and Tall? – California Curious
,” https://californiascienceweekly.wordpress.com/2020/03/04/why-are-californias-redwoods-and-sequoias-so-big/.
50.
He
,
Y. L.
,
Li
,
X. L.
,
Miao
,
Z.
, and
Liu
,
Y. W.
,
2009
, “
Two-Phase Modeling of Mass Transfer Characteristics of a Direct Methanol Fuel Cell
,”
Appl. Therm. Eng.
,
29
(
10
), pp.
1998
2008
.10.1016/j.applthermaleng.2008.10.004
51.
Wang
,
F.
,
Riley
,
G. A.
,
Egbo
,
M.
,
Derby
,
M. M.
,
Hwang
,
G.
, and
Li
,
X.
,
2020
, “
Integrated Micro X-Ray Tomography and Pore-Scale Simulations for Accurate Permeability Predictions of Porous Media
,”
Front. Heat Mass. Transfer
,
15
, pp.
1
8
.10.5098/hmt.15.1
52.
Wang
,
F.
, and
Li
,
X.
,
2017
, “
The Stagnant Thermal Conductivity of Porous Media Predicted by the Random Walk Theory
,”
Int. J. Heat Mass Transfer
,
107
, pp.
520
533
.10.1016/j.ijheatmasstransfer.2016.11.069
53.
Wang
,
F.
,
Jiang
,
H.
,
Chen
,
Y.
, and
Li
,
X.
,
2021
, “
Predicting Thermal and Mechanical Performance of Stochastic and Architected Foams
,”
Int. J. Heat Mass Transfer
,
171
, p.
121139
.10.1016/j.ijheatmasstransfer.2021.121139
54.
Wang
,
F.
,
Li
,
X.
,
Tan
,
J.
,
Hao
,
X.
, and
Xiong
,
B.
,
2022
, “
Pore-Scale Prediction of the Oxygen Effective Diffusivity in Porous Battery Electrodes Using the Random Walk Theory
,”
Int. J. Heat Mass Transfer
,
183
, p.
122085
.10.1016/j.ijheatmasstransfer.2021.122085
55.
Blunt
,
M. J.
,
2001
, “
Flow in Porous Media — Pore-Network Models and Multiphase Flow
,”
Curr. Opin. Colloid Interface Sci.
,
6
(
3
), pp.
197
207
.10.1016/S1359-0294(01)00084-X
56.
Gostick
,
J. T.
,
Ioannidis
,
M. A.
,
Fowler
,
M. W.
, and
Pritzker
,
M. D.
,
2007
, “
Pore Network Modeling of Fibrous Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
173
(
1
), pp.
277
290
.10.1016/j.jpowsour.2007.04.059
57.
Kochkov
,
D.
,
Smith
,
J. A.
,
Alieva
,
A.
,
Wang
,
Q.
,
Brenner
,
M. P.
, and
Hoyer
,
S.
,
2021
, “
Machine Learning–Accelerated Computational Fluid Dynamics
,”
Proc. Natl. Acad. Sci. USA
,
118
(
21
), p. e2101784118.10.1073/pnas.2101784118
58.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.10.1016/j.jcp.2018.10.045
You do not currently have access to this content.