Abstract

Drying of moist porous media can be very energy inefficient. For example, in the pulp and paper industry, paper drying consumes more than two-thirds of the total energy used in paper machines. Novel drying technologies can decrease the energy used for drying and lessen the manufacturing processes' carbon footprint. Developing next-generation drying technologies to dry moist porous media may require an understanding of removing moisture from a fully saturated porous material with excess water. This paper provides a fundamental understanding of heat and mass transfer in a fully saturated porous medium with excess water. This is relevant, for example, in drying tissue as well as pulp or paper for the purpose of thermal insulation where pressing is preferred to be avoided to overcome the reduction in the sheet thickness. For this purpose, a theoretical drying model is developed where the porous medium corresponds to paper and is assumed to be sandwiched between two excess-water layers (bottom and top). The conjugate model consists of energy and mass conservation equations for each layer. The model is validated with corresponding experimental data. In the model, the thickness of each water layer is calculated as a function of drying time based on local temperature and total moisture content. The numerical model is transient and one-dimensional in space (i.e., in the thickness direction). This paper demonstrates the governing equations, boundary conditions, and results when the saturated porous medium with water layers is heated from one side. Moisture and temperature profiles are estimated in the thickness direction of the porous medium as it dries.

References

1.
McMillan
,
C.
,
Boardman
,
R.
,
McKella
,
M.
,
Sabharwall
,
P.
,
Ruth
,
M.
, and
Bragg-Sitton
,
S.
,
2016
, “
Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduce Its Carbon Emissions
,” Joint Institute of Strategic Energy Analysis, Report No. NREL/TP-6A50-66763.
2.
Stenström
,
S.
,
2020
, “
Drying of Paper: A Review 2000–2018
,”
Drying Technol.
,
38
(
7
), pp.
825
845
.10.1080/07373937.2019.1596949
3.
Mujumdar
,
A. S.
,
1987
,
Handbook of Industrial Drying
,
Dekker
,
New York
.
4.
Zhang
,
Y.
, and
Abatzoglou
,
N.
,
Design
,
2020
, “
Fundamentals, Applications and Potentials of Ultrasound-Assisted Drying
,”
Chem. Eng. Res. Des.
,
154
, pp.
21
46
.10.1016/j.cherd.2019.11.025
5.
Asar
,
M. E.
,
Noori
,
Z.
, and
Yagoobi
,
J.
,
2022
, “
Numerical Investigation of the Effect of Ultrasound on Paper Drying
,”
TAPPI J.
,
21
(
3
), pp.
127
140
.10.32964/TJ21.3.127
6.
Martynenko
,
A.
, and
Kudra
,
T.
,
2016
, “
Electrically-Induced Transport Phenomena in EHD Drying–a Review
,”
J. Trends Food Sci. Technol.
,
54
, pp.
63
73
.10.1016/j.tifs.2016.05.019
7.
Patel
,
V. K.
,
Kyle Reed
,
F.
,
Kisner
,
R.
,
Peng
,
C.
,
Moghaddam
,
S.
, and
Mehdizadeh Momen
,
A.
,
2019
, “
Novel Experimental Study of Fabric Drying Using Direct-Contact Ultrasonic Vibration
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
2
), p. 021008.10.1115/1.4041596
8.
Asar
,
M. E.
,
Noori
,
Z.
, and
Yagoobi
,
J.
,
2021
, “
Preliminary Numerical Investigation of the Effect of Ultrasound on Paper Drying
,”
21TAPPICon Virtual
.https://imisrise.tappi.org/TAPPI/Products/21/TCVIR/21TCVIR43.aspx
9.
Yang
,
M.
, and
Yagoobi
,
J.
,
2021
, “
Enhancement of Drying Rate of Moist Porous Media With Dielectrophoresis Mechanism
,”
Drying Technol.
, epub, pp.
1
12
.https://www.tandfonline.com/doi/full/10.1080/07373937.2021.1981922?scroll=top&needAccess=true
10.
Nissan
,
A.
, and
Hansen
,
D.
,
1960
, “
Heat and Mass Transfer Transients in Cylinder Drying: Part I. Unfelted Cylinders
,”
AIChE J.
,
6
(
4
), pp.
606
611
.10.1002/aic.690060420
11.
Seyed-Yagoobi
,
J.
,
Bell
,
D.
, and
Asensio
,
M.
,
1992
, “
Heat and Mass Transfer in a Paper Sheet During Drying
,”
ASME J. Heat Transfer-Trans. ASME
,
114
(
2
), pp.
538
541
.10.1115/1.2911313
12.
Asensio
,
M. C.
, and
Seyed-Yagoobi
,
J.
,
1993
, “
Simulation of Paper-Drying Systems With Incorporation of an Experimental Drum/Paper Thermal Contact Conductance Relationship
,”
ASME J. Energy Resour. Technol.
,
115
(
4
), pp.
291
300
.10.1115/1.2906435
13.
Seyed-Yagoobi
,
J.
,
Sikirica
,
S. J.
, and
Counts
,
K. M.
,
2001
, “
Heating/Drying of Paper Sheet With Gas-Fired Infrared Emitters—Pilot Machine Trials
,”
Drying Technol.
,
19
(
3–4
), pp.
639
651
.10.1081/DRT-100103940
14.
Hoshi
,
Y.
,
Kuno
,
H.
,
Takeshita
,
K.
,
Hashimoto
,
R.
,
Yanagi
,
K. I.
, and
Yoshida
,
S.
,
2001
, “
Prediction of Temperature and Moisture Content Profiles of Paper in a Drying Process
,”
ASME J. Heat Transfer-Trans. ASME
,
30
(
2
), pp.
77
94
.
15.
Lu
,
T.
, and
Shen
,
S.
,
2007
, “
Numerical and Experimental Investigation of Paper Drying: Heat and Mass Transfer With Phase Change in Porous Media
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1248
1258
.10.1016/j.applthermaleng.2006.11.005
16.
Sadeghi
,
M.
, and
Douglas
,
W. M.
,
2004
, “
From Tissue to Linerboard: Validation of a Microscale Simulator for Single Technique and Hybrid Dryers
,”
Proceedings of 14th International Drying Symposium
, Saõ Paulo, Brazil, pp.
444
451
.
17.
Sadeghi
,
M.
,
2003
, “
Modeling and Simulation of Transport Phenomena in Paper Drying
,” Doctor of Philosophy Thesis,
McGill University
, Montreal, QC, Canada.
18.
Anjomshoaa
,
A.
, and
Salmanzadeh
,
M.
,
2022
, “
A Novel Thermodynamic and Heat and Mass Transfer Model for the Multicylinder Dryer Section of a Paper Machine
,”
Drying Technol.
,
40
(
7
), pp.
1307
1328
.10.1080/07373937.2020.1866596
19.
Kong
,
L.
,
Tao
,
Z.
,
Liu
,
H.
, and
Zhang
,
D.
,
2016
, “
Effect of Operating Parameters on the Drying Performance of Multicylinder Paper Machine Dryer Section
,”
Drying Technol.
,
34
(
13
), pp.
1641
1650
.10.1080/07373937.2016.1139588
20.
Zvolinschi
,
A.
,
Johannessen
,
E.
, and
Kjelstrup
,
S.
,
2006
, “
The Second-Law Optimal Operation of a Paper Drying Machine
,”
J. Chem. Eng. Sci.
,
61
(
11
), pp.
3653
3662
.10.1016/j.ces.2005.12.030
21.
Martín
,
E.
,
Viéitez
,
I.
, and
Varas
,
F.
,
2021
, “
A Predictive Model for the Industrial Air-Impingement Drying of Resin Impregnated Paper
,”
Appl. Therm. Eng.
,
199
, p.
117602
.10.1016/j.applthermaleng.2021.117602
22.
Whitaker
,
S.
,
1977
, “
Simultaneous Heat, Mass, and Momentum Transfer in Porous Media: A Theory of Drying
,”
Advances in Heat Transfer
,
Elsevier
. pp.
119
203
.
23.
Coumans
,
W.
,
1994
, “
Transport Parameters and Shrinkage in Paper Drying
,”
Proceedings of 9th International Drying Symposium (IDS '94)
,
V.
Rudolph
, and
R. B.
Keey
, eds.,
Elsevier
,
Amsterdam
, The Netherlands, pp.
1205
1212
.
24.
Harrmann
,
M.
, and
Schulz
,
S.
,
1990
, “
Convective Drying of Paper Calculated With a New Model of the Paper Structure
,”
Drying Technol.
,
8
(
4
), pp.
667
703
.10.1080/07373939008959910
25.
Asensio
,
M.
, and
Seyed-Yagoobi
,
J.
,
1992
, “
Theoretical Drying Study of Single-Tier Versus Conventional Two-Tiered Dryer Configurations
,”
TAPPI J.
,
75
(
10
), pp.
203
211
.
26.
Yan
,
Y.
,
Jiangli
,
P.
,
Jixian
,
D.
, and
Jian
,
S.
,
2022
, “
Study on Paper Drying Rate Based on Lattice Boltzmann Method
,”
J. Korea TAPPI
,
54
(
1
), pp.
10
17
.10.7584/JKTAPPI.2022.2.54.1.10
27.
Vu
,
H. T.
, and
Tsotsas
,
E.
,
2018
, “
Mass and Heat Transport Models for Analysis of the Drying Process in Porous Media: A Review and Numerical Implementation
,”
Int. J. Chem. Eng.
,
2018
, pp.
1
13
.10.1155/2018/9456418
28.
Carbonell
,
M.
,
Virto
,
L.
, and
Gamez-Montero
,
P. J.
,
2018
, “
Dryout and Replenishment of Bottom-Heated Saturated Porous Media With an Overlying Plain Water Layer
,”
Appl. Sci.
,
8
(
12
), p.
2607
.10.3390/app8122607
29.
Incropera
,
F. P.
,
Lavine
,
A. S.
,
Bergman
,
T. L.
, and
DeWitt
,
D. P.
,
2013
,
Principles of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ.
30.
Asensio
,
M. C.
,
2000
, “
Transport Phenomena During Drying of Deformable, Hygroscopic Porous Media: Fundamentals and Applications
,” Ph.D. dissertation,
Texas A & M University
,
College Station, TX
.
31.
Bell
,
D. O.
,
1990
, “
Theoretical and Numerical Analysis of Heat and Mass Transfer in Paper Sheet During Drying
,” M.S. thesis,
Texas A&M University
,
College Station, TX
.
32.
Yang
,
M.
,
Asar
,
M. E.
, and
Yagoobi
,
J.
,
2021
, “
Experimental Study of Heat Transfer Characteristics of Drying Process With Dielectrophoresis Mechanism
,”
ASME
Paper No. IMECE2021-69545.10.1115/IMECE2021-69545
You do not currently have access to this content.