Abstract

In this paper, the film-cooling effectiveness (η) and heat transfer coefficient (h) of different film hole geometries are investigated, including double-jet film cooling (DJFC) holes, streamwise cylindrical holes, and fan-shaped holes, both experimentally and numerically. Results reveal that when the blowing ratio is less than 1.0, the DJFC holes have the highest η and the highest h, as well as the highest net heat flux reduction (NHFR). However, a higher blowing ratio (>1.0) leads to a quickly decreasing NHFR of DJFC holes. The asymmetric antikidney vortex and the high turbulent kinetic energy (TKE) are dominant in the performance of the DJFC holes. Owing to medium effectiveness and the lowest heat transfer coefficient, the fan-shaped holes possess the highest net heat flux reduction at M = 2.0 although the value is negative. The relatively weak kidney vortex and the low TKE can explain the phenomena. The cylindrical holes have the lowest η and the lowest NHFR due to the kidney vortex and relatively higher TKE.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
2.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film-Cooling Physics: Part I-Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
102
112
.10.1115/1.555433
3.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
Eriksen
,
V. L.
, and
Ramsey
,
J. W.
,
1970
, “
Film Cooling Following Injection Through Inclined Circular Tubes
,”
Isr. J. Technol.
,
8
(
1–2
), pp.
145
154
.https://ntrs.nasa.gov/api/citations/19700009085/downloads/19700009085.pdf
4.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.10.1115/1.2927894
5.
Forth
,
C. J. P.
,
Loftus
,
P. J.
, and
Jones
,
T. V.
,
1985
, “
The Effect of Density Ratio on the Film-Cooling of a Flat Plate
,”
AGARD Heat Transfer and Cooling in Gas Turbines
, Antalya, Turkey, Oct. 12–16, p.
12
.
6.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
,
1994
, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
,
116
(
3
), pp.
358
368
.10.1115/1.2929422
7.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
807
813
.10.1115/1.2840938
8.
Goldstein
,
R. J.
, and
Jin
,
P.
,
2001
, “
Film Cooling Downstream of a Row of Discrete Holes With Compound Angle
,”
ASME J. Turbomach.
,
123
(
2
), pp.
222
230
.10.1115/1.1344905
9.
McGovern
,
K. T.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part II—Compound-Angle Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
113
121
.10.1115/1.555434
10.
Ahn
,
J.
,
Jung
,
I. S.
, and
Lee
,
J. S.
,
2003
, “
Film Cooling From Two Rows of Holes With Opposite Orientation Angles: Injectant Behavior and Adiabatic Film Cooling Effectiveness
,”
Int. J. Heat Fluid Flow
,
24
(
1
), pp.
91
99
.10.1016/S0142-727X(02)00200-X
11.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
(
4
), pp.
800
806
.10.1115/1.2840937
12.
Porter
,
J. S.
,
2008
, “
A Comparative Investigation of Round and Fan-Shaped Cooling Hole Near Flow Fields
,”
ASME J. Turbomach.
,
130
(
4
), p.
041020
.10.1115/1.2812952
13.
Shi
,
W.
,
Li
,
X.
,
Wang
,
L.
,
Ren
,
J.
, and
Jiang
,
H.
,
2020
, “
Large Eddy Simulation of Film Cooling for the Real Additive Manufactured Fan-Shaped Holes
,”
ASME
Paper No. GT2020-14852. 10.1115/GT2020-14852
14.
Yu
,
Y.
,
Yen
,
C.-H.
,
Shih
,
T. I.-P.
,
Chyu
,
M. K.
, and
Gogineni
,
S.
,
2002
, “
Film Cooling Effectiveness and Heat Transfer Coefficient Distributions Around Diffusion Shaped Holes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
124
(
5
), pp.
820
827
.10.1115/1.1418367
15.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach.
,
129
(
4
), pp.
809
815
.10.1115/1.2720508
16.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2008
, “
Double-Jet Film-Cooling for Highly Efficient Film-Cooling With Low Blowing Ratios
,”
ASME
Paper No. GT2008-50073. 10.1115/GT2008-50073
17.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2009
, “
A Parametric Study on the Influence of the Lateral Ejection Angle of Double-Jet Holes on the Film Cooling Effectiveness for High Blowing Ratios
,”
ASME
Paper No. GT2009-59321. 10.1115/GT2009-59321
18.
Yao
,
J.
,
Xu
,
J.
,
Zhang
,
K.
,
Lei
,
J.
, and
Wright
,
L. M.
,
2019
, “
Effect of Density Ratio on Film-Cooling Effectiveness Distribution and Its Uniformity for Several Hole Geometries on a Flat Plate
,”
ASME J. Turbomach.
,
141
(
5
), p.
051008
.10.1115/1.4041810
19.
Wang
,
Z.
,
Liu
,
J. J.
,
An
,
B. T.
, and
Zhang
,
C.
, “
Effects of Axial Row-Spacing for Double-Jet Film-Cooling on the Cooling Effectiveness
,”
ASME
Paper No. GT2011-4605. 10.1115/GT2011-4605
20.
Yao
,
J.
,
Zhang
,
K.
,
Wu
,
J.
,
Lei
,
J.
,
Fang
,
Y.
, and
Wright
,
L. M.
,
2019
, “
An Experimental Investigation on Streamwise Distance and Density Ratio Effects on Double-Jet Film-Cooling
,”
Appl. Therm. Eng.
,
156
, pp.
410
421
.10.1016/j.applthermaleng.2019.04.081
21.
He
,
J.
,
Yao
,
J.
,
Yang
,
X.
,
Zhang
,
K.
,
Lei
,
J.
, and
Xie
,
G.
,
2023
, “
Investigation on Overall Performance of Double-Jet Film Cooling Holes With Various Spanwise Distance
,”
Int. J. Therm. Sci.
,
183
, p.
107841
.10.1016/j.ijthermalsci.2022.107841
22.
Cho
,
M. Y.
,
Seo
,
H. S.
, and
Kim
,
Y. J.
,
2014
, “
Effect of Hole Pitch Ratio and Compound Angle on the Thermal Flow Fields of Double-Jet Film Cooling Hole
,”
ASME
Paper No. FEDSM2014-21479. 10.1115/FEDSM2014-21479
23.
He
,
J.
,
Yao
,
J.
,
Yang
,
X.
,
Duan
,
J.
,
Lei
,
J.
, and
Xie
,
G.
,
2020
, “
Effects of Mainstream Attack Angles on Film-Cooling Effectiveness of Double-Jet Film-Cooling
,”
Int. J. Therm. Sci.
,
149
, p.
106183
.10.1016/j.ijthermalsci.2019.106183
24.
Yao
,
J.
,
Su
,
P.
,
He
,
J.
,
Wu
,
J.
,
Lei
,
J.
, and
Fang
,
Y.
,
2020
, “
Experimental and Numerical Investigations on Double-Jet Film-Cooling With Different Mainstream Incidence Angles
,”
Appl. Therm. Eng.
,
166
, p.
114737
.10.1016/j.applthermaleng.2019.114737
25.
Liao
,
G.
,
Wang
,
X.
,
Li
,
J.
, and
Zhang
,
F.
,
2014
, “
Effects of Curvature on the Film Cooling Effectiveness of Double-Jet Film Cooling
,”
ASME
Paper No. GT2014-26263.10.1115/GT2014-26263
26.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2010
, “
Film Cooling Effectiveness Comparison Between Shaped-and Double Jet Film Cooling Holes in a Row Arrangement
,”
ASME
Paper No. GT2010-22604. 10.1115/GT2010-22604
27.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2000
, “
Film-Cooling Holes With Expanded Exits: Near-Hole Heat Transfer Coefficients
,”
Int. J. Heat Fluid Flow
,
21
(
2
), pp.
146
155
.10.1016/S0142-727X(99)00076-4
28.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2003
, “
A Novel Transient Liquid Crystal Technique to Determine Heat Transfer Coefficient Distributions and Adiabatic Wall Temperature in a Three-Temperature Problem
,”
ASME J. Turbomach.
,
125
(
3
), pp.
538
546
.10.1115/1.1575252
29.
Liu
,
C.-L.
,
Zhu
,
H.-R.
,
Bai
,
J.-T.
, and
Xu
,
D.-C.
,
2009
, “
Experimental Research on the Thermal Performance of Converging Slot Holes With Different Divergence Angles
,”
Exp. Therm. Fluid Sci.
,
33
(
5
), pp.
808
817
.10.1016/j.expthermflusci.2009.02.010
30.
Kline
,
S. J.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.http://54.243.252.9/engr-1330-webroot/6-Projects/PInstrumentCalibration/Kline_McClintock1953.pdf
31.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Stream, and Convergence Zones in Turbulent Flow
,”
Center for Turbulence Research
, Report No. N89-24555.
32.
Zhou
,
W.
,
Peng
,
D.
,
Liu
,
Y.
, and
Hu
,
H.
,
2019
, “
Assessment of Film Cooling's Surface Quantities Using Pressure-and Temperature-Sensitive Paint: Comparisons Between Shaped and Sand-Dune Inspired Holes
,”
Exp. Therm. Fluid Sci.
,
101
, pp.
16
26
.10.1016/j.expthermflusci.2018.10.005
You do not currently have access to this content.