Abstract

Array jet impingement in conjunction with other cooling methods such as effusion cooling is used in gas turbine combustion zones to provide optimized cooling in the form of double wall cooling around a combustion chamber. Utilizing a transient liquid crystal (TLC) technique an experimental investigation into the effects of pressure gradients and single versus multiple exits for array jet impingement crossflow is evaluated in the form of a detailed heat transfer analysis. In this study, four pressure gradients to bias mass flow ratios as (1:1), (2:1), (3:1), and (1:0), two jet array configurations either inline or staggered with jet to jet spacings (x/D = y/D) of 1.4, 1.9, and 2.2, three jet to target distances (z/D) ranging from 2 to 4, and three Reynolds number from 5000 to 15,000 are considered. In total, a test matrix of 72 different performance conditions was evaluated. Results are presented as local and area averaged Nusselt number plots along with local heat transfer coefficient contours. Overall, Nusselt number decreases with increased (z/D) and increased pressure gradient bias toward a single exit from (1:1) to (1:0). There is also slightly better performance from inline jet array configurations compared to staggered configurations.

References

1.
Terzis
,
A.
,
Wagner
,
G.
,
von Wolfersdorf
,
J.
,
Ott
,
P.
, and
Weigand
,
B.
,
2014
, “
Hole Staggering Effect on the Cooling Performance of Narrow Impingement Channels Using the Transient Liquid Crystal Technique
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
7
), p.
071707
.10.1115/1.4027250
2.
Jung
,
E. Y.
,
Oh
,
S. H.
,
Lee
,
D. H.
,
Kim
,
K. M.
, and
Cho
,
H. H.
,
2017
, “
Effect of Impingement Jet on the Full-Coverage Film Cooling System With Double Layered Wall
,”
Exp. Heat Transfer
,
30
(
6
), pp.
544
562
.10.1080/08916152.2017.1328470
3.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
,
92
(
1
), pp.
73
82
.10.1115/1.3445306
4.
Florschuetz
,
L.
,
Metzger
,
D.
,
Takeuchi
,
D.
, and
Berry
,
R.
,
1980
, “
Multiple Jet Impingement - Experimental Characteristic Investigation of In-Line and Staggered Arrays With Crossflow
,” NASA Report No. 3217.
5.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
103
(
2
), pp.
337
342
.10.1115/1.3244463
6.
Gillespie
,
D. R. H.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Kohler
,
S. T.
,
1998
, “
Full Surface Local Heat Transfer Coefficient Measurements in a Model of an Integrally Cast Impingement Cooling Geometry
,”
ASME J. Turbomach.
, 120(1), pp.
92
99
.10.1115/1.2841394
7.
Terzis
,
A.
,
Ott
,
P.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Cochet
,
M.
,
2014
, “
Detailed Heat Transfer Distributions of Narrow Impingement Channels for Cast-in Turbine Airfoils
,”
ASME J. Turbomach.
,
136
(
9
), p.
091011
.10.1115/1.4027679
8.
Terzis
,
A.
,
Ott
,
P.
,
Cochet
,
M.
,
von Wolfersdorf
,
J.
, and
Weigand
,
B.
,
2015
, “
Effect of Varying Jet Diameter on the Heat Transfer Distributions of Narrow Impingement Channels
,”
ASME J. Turbomach.
,
137
(
2
), p.
021004
.10.1115/1.4028294
9.
Li
,
W.
,
Li
,
X.
,
Yang
,
L.
,
Ren
,
J.
,
Jiang
,
H.
, and
Ligrani
,
P.
,
2017
, “
Effect of Reynolds Number, Hole Patterns, and Hole Inclination on Cooling Performance of an Impinging Jet Array-Part I: Convective Heat Transfer Results and Optimization
,”
ASME J. Turbomach.
,
139
(
4
), p.
041002
.10.1115/1.4035045
10.
Singh
,
P.
, and
Ekkad
,
S. V.
,
2017
, “
Effects of Spent Air Removal Scheme on Internal-Side Heat Transfer in an Impingement-Effusion System at Low Jet-to-Target Plate Spacing
,”
Int. J. Heat Mass Transfer
,
108
, pp.
998
1010
.10.1016/j.ijheatmasstransfer.2016.12.104
11.
Li
,
W.
,
Xu
,
M.
,
Ren
,
J.
, and
Jiang
,
H.
,
2017
, “
Experimental Investigation of Local and Average Heat Transfer Coefficients Under an Inline Impinging Jet Array, Including Jets With Low Impingement Distance and Inclined Angle
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
1
), p. 012201.10.1115/1.4034165
12.
El-Gabry
,
L. A.
, and
Kaminski
,
D. A.
,
2005
, “
Experimental Investigation of Local Heat Transfer Distribution on Smooth and Roughened Surfaces Under an Array of Angled Impinging Jets
,”
ASME J. Turbomach.
,
127
(
3
), pp.
532
544
.10.1115/1.1861918
13.
Ekkad
,
S. V.
, and
Han
,
J.-C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
, 11(7), p.
957
.10.1088/0957-0233/11/7/312
14.
Terzis
,
A.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Ott
,
P.
,
2012
, “
Thermocouple Thermal Inertia Effects on Impingement Heat Transfer Experiments Using the Transient Liquid Crystal Technique
,”
Meas. Sci. Technol.
,
23
(
11
), p.
115303
.10.1088/0957-0233/23/11/115303
15.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
16.
Yan
,
Y.
, and
Owen
,
J. M.
,
2002
, “
Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
29
35
.10.1016/S0142-727X(01)00125-4
17.
Huang
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1998
, “
Detailed Heat Transfer Distributions Under an Array of Orthogonal Impinging Jets
,”
J. Thermophys. Heat Trans.
,
12
(
1
), pp.
73
79
.10.2514/2.6304
18.
Lee
,
J.
Ren
,
Z.
,
Haegele
,
J.
,
Potts
,
G.
,
Sik Jin
,
J.
,
Ligrani
,
P.
,
Fox
,
M. D.
, and
Moon
,
H.
,
2014
, “
Effects of Jet-To-Target Plate Distance and Reynolds Number on Jet Array Impingement Heat Transfer
,”
ASME J. Turbomach.
,
136
(
5
), p.
051013
.10.1115/1.40252
You do not currently have access to this content.