Abstract

This paper presents a 2-D numerical study to investigate the fluid flow behavior and cooling characteristics caused by injecting tiny water droplets into the sweeping air jet through a fluidic oscillator. An unsteady Reynolds-averaged Navier–Stokes (URANS) simulation accompanied with the k–ω SST turbulence model is used in this study. The movement and evaporation of the mist are simulated by using the discrete phase model (DPM). The study has been conducted for a target wall with a constant heat flux of 3,000 W/m2, jet-to-wall distance of 4D, ReD = 2,500, and a mist/air mass ratio of 5% with a droplet size of 5 microns. A comparison between the cooling performance of steady and sweeping jets is presented for two impingement schemes (i.e., confined and unconfined impingement). The approach of using a slip upper wall boundary condition as an alternative to the unconfined impingement scheme is investigated as well. The results show that adding mist provided a temperature reduction of 5–10% on the target wall in all cases when compared to the air cases. Mist mostly follows the air jet behavior in both steady and sweeping jets in both impingement schemes. The liquid droplet coalescence phenomenon prevails in the sweeping jet case, while it is not as significant in the steady jet case. For the confined impingement, both mist jets provided the similar average temperature reduction. However, the steady mist jet introduced a 58% more target wall shear compared to the sweeping mist jet. For the unconfined impingement, the steady mist jet achieved a better average cooling performance compared to that of the sweeping mist jet. However, the steady mist jet introduced a 72% more target wall shear compared to the sweeping mist jet. Using a slip upper wall boundary condition to reduce the computational time resulted in similar average heat transfer distribution on the target wall to the unconfined case. However, the flow pattern, vortical structures, and droplet dynamics were very different.

References

1.
Deadwyler
,
R.
,
1980
,
A Review of Models of the Fluidic Generator
,
U.S. Army Electronics Research and Development Command, Harry Diamond Laboratories
, Silver Spring, MD.
2.
Shakouchi
,
T.
,
1989
, “
A New Fluidic Oscillator, Flowmeter, Without Control Port and Feedback Loop
,”
ASME J. Dyn. Syst., Meas., Control
,
111
(
3
), pp.
535
539
.10.1115/1.3153085
3.
Sieber
,
M.
,
Ostermann
,
F.
,
Woszidlo
,
R.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2016
, “
Lagrangian Coherent Structure in the Flow Field of a Fluidic Oscillator
,”
Phys. Rev. Fluids
,
1
(
5
), p.
050509
.10.1103/PhysRevFluids.1.050509
4.
Reba
,
I.
,
1966
, “
Applications of the Coanda Effect
,”
Sci. Am.
,
214
(
6
), pp.
84
92
.10.1038/scientificamerican0666-84
5.
Herr
,
F.
, and
Camci
,
C.
,
1997
, “
Self-Oscillating-Impinging-Jet as a Gas Turbine Cooling Enhancement System
,”
ASME
Paper No. 97-GT-330.10.1115/97-GT-330
6.
Lundgreen
,
R. K.
,
Hossain
,
M. A.
,
Prenter
,
R.
,
Bons
,
J. P.
,
Gregory
,
J. W.
, and
Ameri
,
A.
,
2017
, “
Impingement Heat Transfer Characteric of a Sweeping Jet
,”
AIAA
Paper No. 2017–1535.10.2514/6.2017-1535
7.
Agricola
,
L.
,
Prenter
,
R.
,
Lundgreen
,
R. K.
,
Hossain
,
M. A.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2017
, “
Impinging Sweeping Jet Heat Transfer
,”
AIAA
Paper No. 2017-4974.10.2514/6.2017-4974
8.
Hossain
,
M. A.
,
Agricola
,
L.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2018
, “
Effects of Exit Fan Angle on the Heat Transfer Performance of Sweeping Jet Impingement
,”
AIAA
Paper No. 2018-4886.10.2514/6.2018-4886
9.
Hossain
,
M. A.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2021
, “
Effects of Fluidic Oscillator Nozzle Angle on the Flowfield and Impingement Heat Transfer
,”
AIAA J.
,
59
(
6
), pp.
2113
2125
.10.2514/1.J059931
10.
Wen
,
X.
,
Liu
,
Y.
, and
Tang
,
H.
,
2018
, “
Unsteady Behavior of a Sweeping Impinging Jet: Time-Resolved Particle Image Velocimetry Measurements
,”
Exp. Therm. Fluid Sci.
,
96
, pp.
111
127
.10.1016/j.expthermflusci.2018.02.033
11.
Park
,
T.
,
Kara
,
K.
, and
Kim
,
D.
,
2018
, “
Flow Structure and Heat Transfer of a Sweeping Jet Impinging on a Flat Wall
,”
Int. J. Heat Mass Transfer
,
124
(
2018
), pp.
920
928
.10.1016/j.ijheatmasstransfer.2018.04.016
12.
Kim
,
S.
,
Kim
,
H.
, and
Kim
,
K.
,
2019
, “
Measurement of Two-Dimensional Heat Transfer and Flow Characteristics of an Impinging Sweeping Jet
,”
Int. J. Heat Mass Transfer
,
136
(
2019
), pp.
415
426
.10.1016/j.ijheatmasstransfer.2019.03.021
13.
Zhou
,
W.
,
Yuan
,
L.
,
Liu
,
Y.
,
Peng
,
D.
, and
Wen
,
X.
,
2019
, “
Heat Transfer of a Sweeping Jet Impinging at Narrow Spacings
,”
Exp. Therm. Fluid Sci.
,
103
(
2019
), pp.
89
98
.10.1016/j.expthermflusci.2019.01.007
14.
Abdelmaksoud
,
R.
, and
Wang
,
T.
,
2023
, “
Recent Advances in Heat Transfer Applications Using Sweeping Jet Fluidic Oscillators
,”
Int. J. Energy Clean Environ.
,
24
(
2
), pp.
27
81
.10.1615/InterJEnerCleanEnv.2022041464
15.
Li
,
X.
,
Gaddis
,
J. L.
, and
Wang
,
T.
,
2001
, “
Mist/Steam Heat Transfer of Confined Slot Jet Impingement
,”
ASME J. Turbomach.
,
123
(
1
), pp.
161
167
.10.1115/1.1331536
16.
Li
,
X.
,
Gaddis
,
J. L.
, and
Wang
,
T.
,
2003
, “
Mist/Steam Cooling by a Row of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
46
(
12
), pp.
2279
2290
.10.1016/S0017-9310(02)00521-5
17.
Wang
,
T.
,
Gaddis
,
J. L.
, and
Li
,
X.
,
2005
, “
Mist/Steam Heat Transfer of Multiple Rows of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5179
5191
.10.1016/j.ijheatmasstransfer.2005.07.016
18.
Li
,
X.
,
Gaddis
,
J. L.
, and
Wang
,
T.
,
2003
, “
Mist/Steam Heat Transfer With Jet Impingement Onto a Concave Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
125
(
3
), pp.
438
446
.10.1115/1.1561813
19.
Wang
,
T.
, and
Dhanasekaran
,
T. S.
,
2012
, “
Model Verification of Mist/Steam Cooling With Jet Impingement Onto a Concave Surface and Prediction at Elevated Operating Condition
,”
ASME J. Turbomach.
,
134
(
2
), p.
021016
.10.1115/1.4003056
20.
Khangembam
,
C.
, and
Singh
,
D.
,
2019
, “
Experimental Investigation of Air–Water Mist Jet Impingement Cooling Over a Heated Cylinder
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
8
), p.
082201
.10.1115/1.4043771
21.
Khangembam
,
C.
,
Singh
,
D.
,
Handique
,
J.
, and
Singh
,
K.
,
2020
, “
Experimental and Numerical Study of Air-Water Mist Jet Impingement Cooling on a Cylinder
,”
Int. J. Heat Mass Transfer
,
150
, p.
119368
.10.1016/j.ijheatmasstransfer.2020.119368
22.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
23.
Li
,
X.
, and
Wang
,
T.
,
2005
, “
Effects of Various Modeling Schemes on Mist Film Cooling
,”
ASME
Paper No. IMECE2005-81780.10.1115/IMECE2005-81780
24.
Abdelmaksoud
,
R.
, and
Wang
,
T.
,
2021
, “
Validation of Multiphase Computational Model Using Detailed Experimental Information of Mist Film Cooling
,”
ASME
Paper No. HT2021-63467.10.1115/HT2021-63467
25.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
1987
, “
The Tab Method for Numerical Calculation of Spray Droplet Breakup
,”
SAE
Paper No. 872089.10.4271/872089
26.
O'Rourke
,
P. J.
,
1981
,
Collective Drop Effects on Vaporizing Liquid Sprays
, Los Alamos National Laboratory, Loa Alamos, NM, Technical Report No. LA-9069-TON: DE82010958.
27.
Abdelmaksoud
,
R.
, and
Wang
,
T.
,
2022
, “
A Numerical Analysis of Sweeping Air Jet Impingement Cooling From a Fluidic Oscillator
,”
ASTFE 7th Therm. Fluids Eng. Conf. (TFEC)
, Las Vegas, NV, May 15–18, Paper No. TFEC 2022–41320.
28.
Li
,
X.
,
Gaddis
,
J. L.
, and
Wang
,
T.
,
2001
, “
Modeling of Heat Transfer in a Mist/Steam Impingement Jet
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
123
(
6
), pp.
1086
1092
.10.1115/1.1409262
29.
Wang
,
T.
, and
Dhanasekaran
,
T. S.
,
2010
, “
Calibration of a Computational Model to Predict Mist/Steam Impinging Jets Cooling in Gas Turbine Blades
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
132
(
12
), p.
122201
.10.1115/1.4002394
You do not currently have access to this content.