Abstract

Regarding the steady-state heat conduction problem in exchanger tubes, the meshfree boundary integral equation method is employed to determine the conduction shape factor in this paper. Different from the conventional boundary element method, the present method is free of mesh generation. After using the parametric function to represent the boundary contour and adopting the Gaussian quadrature, only collocating points on the boundary is required to obtain the linear algebraic equations. By introducing the local exact solution, the singular integral in the sense of the Cauchy principal value can be novelly determined. In addition, the boundary layer effect due to the nearly singular integral in the boundary integral equation can be dealt with. Two cases of different boundary conditions are considered. One is the isothermal condition on both the inner and outer surfaces. The other is the isothermal condition on the inner surface and the convection condition on the outer surface. Besides, numerical instability is found and the nonuniqueness solution due to the degenerate scale is examined by calculating the conduction shape factor and the temperature on the outer surface.

References

1.
Langmuir
,
I.
,
1919
, “
Convection and Radiation of Heat
,”
Trans. Am. Electrochem.
,
23
, pp.
299
332
.https://books.google.com.tw/books?id=FyIZAQAAIAAJ&pg=PA299&hl=zh-TW&source=gbs_toc_r&cad=3#v=onepage&q&f=false
2.
Smith
,
J. C.
,
Lind
,
J. E. J.
, and
Lermond
,
D. S.
,
1958
, “
Shape Factors for Conductive Heat Flow
,”
AIChE J.
,
4
(
3
), pp.
330
331
.10.1002/aic.690040319
3.
Balcerzak
,
M. J.
, and
Raynor
,
S.
,
1961
, “
Steady State Temperature Distribution and Heat Flow in Prismatic Bars With Isothermal Boundary Conditions
,”
Int. J. Heat. Mass. Transfer
,
3
(
2
), pp.
113
125
.10.1016/0017-9310(61)90074-6
4.
Lewis
,
G. K.
,
1968
, “
Shape Factors in Conduction Heat Flow for Circular Bars and Slabs With Various Internal Geometries
,”
Int. J. Heat. Mass. Transfer
,
11
(
6
), pp.
985
992
.10.1016/0017-9310(68)90004-5
5.
Dugan
,
J. P.
,
1972
, “
On the Shape Factor for a Hollow, Square Cylinder
,”
AlChE J.
,
18
(
5
), pp.
1082
1083
.10.1002/aic.690180537
6.
Griggs
,
E. I.
,
Pitts
,
D. R.
, and
Goyal
,
A. B.
,
1973
, “
Conductive Shape Factors for a Circular Cylinder Centered in a Rectangular Slab Having One and Two Adiabatic Surfaces
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
95
(
1
), pp.
129
130
.10.1115/1.3449984
7.
Naghdi
,
A. K.
,
1981
, “
Conduction Shape Factors for Certain Multi-Hole Prismatic Bars
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
103
(
4
), pp.
821
823
.10.1115/1.3244551
8.
Warrington
,
R. O.
, Jr.
,
Powe
,
R. E.
, and
Mussulman
,
R. L.
,
1982
, “
Steady Conduction in Three-Dimensional Shells
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
104
(
2
), pp.
393
394
.10.1115/1.3245104
9.
Hsieh
,
C. K.
, and
Yang
,
S. L.
,
1984
, “
A New Theory on the Critical Thickness of Insulation
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
106
(
3
), pp.
648
652
.10.1115/1.3246730
10.
Hassani
,
A. V.
, and
Hollands
,
K. G. T.
,
1989
, “
On Natural Convection Heat Transfer From Three-Dimensional Bodies of Arbitrary Shape
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
111
(
2
), pp.
363
371
.10.1115/1.3250686
11.
Hassani
,
A. V.
, and
Hollands
,
K. G. T.
,
1990
, “
Conduction Shape Factor for a Region of Uniform Thickness Surrounding a Three-Dimensional Body of Arbitrary Shape
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
112
(
2
), pp.
492
495
.10.1115/1.2910405
12.
Hassani
,
A. V.
,
Hollands
,
K. G. T.
, and
Raithby
,
G. D.
,
1993
, “
A Close Upper Bound for the Conduction Shape Factor of a Uniform Thickness, 2D Layer
,”
Int. J. Heat. Mass. Transfer
,
36
(
12
), pp.
3155
3158
.10.1016/0017-9310(93)90044-7
13.
Nickolay
,
M.
,
Fischer
,
L.
, and
Martin
,
H.
,
1998
, “
Shape Factors for Conductive Heat Flow in Circular and Quadratic Cross-Sections
,”
Int. J. Heat. Mass. Transfer
,
41
(
11
), pp.
1437
1444
.10.1016/S0017-9310(97)00351-7
14.
Kołodziej
,
J. A.
, and
Stręk
,
T.
,
2001
, “
Analytical Approximations of the Shape Factors for Conductive Heat Flow in Circular and Regular Polygonal Cross-Sections
,”
Int. J. Heat. Mass. Transfer
,
44
(
5
), pp.
999
1012
.10.1016/S0017-9310(00)00162-9
15.
Rana
,
S. K.
, and
Jena
,
A.
,
2017
, “
A BEM Formulation of Two-Dimensional Steady State Heat Conduction in Exchanger Tubes of Arbitrary Cross Sections
,”
Int. J. Heat. Mass. Transfer
,
106
, pp.
195
211
.10.1016/j.ijheatmasstransfer.2016.10.055
16.
Hirbodi
,
K.
, and
Jafarpur
,
K.
,
2020
, “
A Simple and Accurate Model for Conduction Shape Factor of Hollow Cylinders
,”
Int. J. Therm. Sci.
,
153
, p.
106362
.10.1016/j.ijthermalsci.2020.106362
17.
Chhokar
,
C.
,
Abadi
,
G. B.
, and
Bahrami
,
M.
,
2022
, “
A New Analytical Model for the Conduction Shape Factor of Annulus Sectors
,”
Int. J. Heat. Mass. Transfer
,
196
, p.
123304
.10.1016/j.ijheatmasstransfer.2022.123304
18.
Chen
,
J. T.
,
Kao
,
S. K.
, and
Lee
,
J. W.
,
2017
, “
Analytical Derivation and Numerical Experiment of Degenerate Scale by Using the Degenerate Kernel of the Bipolar Coordinates
,”
Eng. Anal. Bound. Elem.
,
85
, pp.
70
86
.10.1016/j.enganabound.2017.08.006
19.
Chen
,
J. T.
, and
Shen
,
W. C.
,
2007
, “
Degenerate Scale for Multiply Connected Laplace Problems
,”
Mech. Res. Commun.
,
34
(
1
), pp.
69
77
.10.1016/j.mechrescom.2006.06.009
20.
Lee
,
J. W.
, and
Chen
,
J. T.
,
2012
, “
A Semi-Analytical Approach for a Nonconfocal Suspended Strip in an Elliptical Waveguide
,”
IEEE Trans. Microw. Theory Tech.
,
60
(
12
), pp.
3642
3655
.10.1109/TMTT.2012.2221138
21.
Chen
,
J. T.
, and
Lee
,
J. W.
,
2013
, “
A Semi-Analytical Method for Near-Trapped Mode and Fictitious Frequencies of Multiple Scattering by an Array of Elliptical Cylinders in Water Waves
,”
Phys. Fluids
,
25
(
9
), p.
097103
.10.1063/1.4819332
22.
Lee
,
J. W.
,
Chen
,
J. T.
,
Leu
,
S. Y.
, and
Kao
,
S. K.
,
2014
, “
Null-Field BIEM for Solving a Scattering Problem From a Point Source to a Two-Layer Prolate Spheroid
,”
Acta Mech.
,
225
(
3
), pp.
873
891
.10.1007/s00707-013-0988-x
23.
Chen
,
J. T.
, and
Hong
,
H.-K.
,
1994
, “
Dual Boundary Integral Equations at a Corner Using Contour Approach Around Singularity
,”
Adv. Eng. Softw.
,
21
(
3
), pp.
169
178
.10.1016/0965-9978(94)90019-1
24.
Lee
,
J. W.
,
Liu
,
L. W.
,
Hong
,
H.-K.
, and
Chen
,
J. T.
,
2016
, “
Applications of the Clifford Algebra Valued Boundary Element Method to Electromagnetic Scattering Problems
,”
Eng. Anal. Bound. Elem.
,
71
, pp.
140
150
.10.1016/j.enganabound.2016.07.007
25.
Hong
,
H.-K.
,
Kao
,
Y. C.
,
Lee
,
J. W.
,
Liu
,
L. W.
, and
Chen
,
J. T.
,
2018
, “
Quaternion Boundary Element Method for Coupled Exterior and Interior Magnetostatic Fields
,”
IEEE Trans. Magn.
,
54
(
6
), pp.
1
10
.10.1109/TMAG.2018.2791415
26.
Hwang
,
W. S.
, and
Huang
,
Y. Y.
,
1998
, “
Non-Singular Direct Formulation of Boundary Integral Equations for Potential Flows
,”
Int. J. Numer. Methods Fluids
,
26
(
6
), pp.
627
635
.10.1002/(SICI)1097-0363(19980330)26:6<627::AID-FLD664>3.0.CO;2-W
27.
Young
,
D. L.
,
Hwang
,
W. S.
,
Tsai
,
C. C.
, and
Lu
,
H. L.
,
2005
, “
Accuracy of Desingularized Boundary Integral Equations for Plane Exterior Potential Problems
,”
Eng. Anal. Bound. Elem.
,
29
(
3
), pp.
224
231
.10.1016/j.enganabound.2004.12.007
28.
Klaseboer
,
E.
,
Sun
,
Q.
, and
Chan
,
D. Y. C.
,
2012
, “
Non-Singular Boundary Integral Methods for Fluid Mechanics Applications
,”
J. Fluid Mech.
,
696
, pp.
468
478
.10.1017/jfm.2012.71
29.
Moharana
,
M. K.
, and
Das
,
P. K.
,
2012
, “
Heat Conduction Through Eccentric Annuli: An Appraisal of Analytical, Semi-Analytical, and Approximate Techniques
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
9
), p.
091301
.10.1115/1.4006391
30.
Leontiou
,
T.
, and
Fyrillas
,
M. M.
,
2014
, “
Shape Optimization With Isoperimetric Constraints for Isothermal Pipes Embedded in an Insulated Slab
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
9
), p.
094502
.10.1115/1.4027780
31.
Sun
,
Q.
,
Klaseboer
,
E.
,
Khoo
,
B. C.
, and
Chan
,
D. Y. C.
,
2014
, “
A Robust and Non-Singular Formulation of the Boundary Integral Method for the Potential Problem
,”
Eng. Anal. Bound. Elem.
,
43
, pp.
117
123
.10.1016/j.enganabound.2014.03.010
32.
Sun
,
Q.
,
Klaseboer
,
E.
,
Khoo
,
B. C.
, and
Chan
,
D. Y. C.
,
2015
, “
Boundary Regularized Integral Equation Formulation for the Helmholtz Equation in Acoustics
,”
R. Soc. Open Sci.
,
2
(
1
), pp.
140520
140529
.10.1098/rsos.140520
33.
Sun
,
Q.
,
Klaseboer
,
E.
,
Khoo
,
B. C.
, and
Chan
,
D. Y. C.
,
2015
, “
Boundary Regularized Integral Equation Formulation of Stokes Flow
,”
Phys. Fluids
,
27
(
2
), p.
023102
.10.1063/1.4907279
34.
Sun
,
F. L.
,
Zhang
,
Y. M.
,
Young
,
D. L.
, and
Chen
,
W.
,
2016
, “
A New Boundary Meshfree Method for Potential Problems
,”
Adv. Eng. Softw.
,
100
, pp.
32
42
.10.1016/j.advengsoft.2016.06.009
35.
Zhang
,
Y. M.
,
Sun
,
F. L.
,
Young
,
D. L.
,
Chen
,
W.
, and
Gu
,
Y.
,
2016
, “
Average Source Boundary Node Method for Potential Problems
,”
Eng. Anal. Bound. Elem.
,
70
, pp.
114
125
.10.1016/j.enganabound.2016.06.007
36.
Zhang
,
Y. M.
,
Sun
,
F. L.
,
Qu
,
W. Z.
,
Gu
,
Y.
, and
Young
,
D. L.
,
2018
, “
A Meshless Average Source Boundary Node Method for Steady-State Heat Conduction in General Anisotropic Media
,”
Comput. Math. Appl.
,
75
(
5
), pp.
1739
1755
.10.1016/j.camwa.2017.11.036
37.
Zhang
,
C.
,
Fu
,
Z.
, and
Zhang
,
Y.
,
2021
, “
A New Global and Direct Integral Formulation for 2D Potential Problems
,”
Eng. Anal. Bound. Elem.
,
125
, pp.
233
240
.10.1016/j.enganabound.2021.01.020
38.
Sangani
,
A. S.
,
2019
, “
Heat Transfer From Particles Confined Between Two Parallel Walls
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
2
), p.
022001
.10.1115/1.4041802
39.
Lienhard
,
J. H. V.
,
2019
, “
Exterior Shape Factors From Interior Shape Factors
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
6
), p.
061301
.10.1115/1.4042912
40.
Chen
,
J. T.
,
Kao
,
S. K.
,
Kao
,
J. H.
, and
Tai
,
W. C.
,
2022
, “
An Indirect BIE Free of Degenerate Scales
,”
Commun. Pure Appl. Anal.
,
21
(
6
), p.
1969
.10.3934/cpaa.2021114
41.
Kuo
,
S. R.
,
Chen
,
J. T.
,
Lee
,
J. W.
, and
Chen
,
Y. W.
,
2013
, “
Analytical Derivation and Numerical Experiments of Degenerate Scales for Regular n-Gon Domains in Two-Dimensional Laplace Problems
,”
Appl. Math. Comput.
,
219
(
10
), pp.
5668
5683
.10.1016/j.amc.2012.11.008
42.
Chen
,
Y. Z.
,
2022
, “
Numerical Solution for the Degenerate Scale for Two Unequal Circles in Thermal Conduction Problem
,”
J. Therm. Stresses
,
45
(
5
), pp.
375
381
.10.1080/01495739.2022.2037481
43.
Corfdir
,
A.
, and
Bonnet
,
G.
,
2018
, “
Degenerate Scale for 2D Laplace Equation With Mixed Boundary Condition and Comparison With Other Conditions on the Boundary
,”
Eng. Anal. Bound. Elem.
,
88
, pp.
14
25
.10.1016/j.enganabound.2017.12.004
You do not currently have access to this content.