Abstract

Three-dimensional continuity, momentum, and energy equations have been solved in a battery pack of a unit module with 3 × 3 × 3 and 4 × 4 × 4 Li-ion cells to obtain the flow field and temperature distribution around the batteries. The battery spacing to hydraulic diameter ratio in x, y, and z directions have been varied in a wide range from 0.04458 to 0.08172, 0.00833 to 0.07133, and 0.007496 to 0.08052 for 4 × 4 × 4 cells, and 0.06 to 0.11, 0.0111 to 0.09649, 0.01 to 0.11 for 3 × 3 × 3 to obtain the optimum configuration for maximum heat transfer and minimum entropy generation. Air is pumped through the battery pack as a transport medium for heat transfer with Reynolds number (Re) varying in the laminar range from 400 to 2000. The results are plotted in terms of the average surface Nu over the battery surface and average volumetric temperature of the battery and air. It is found that the temperature of the battery pack remains almost constant against Sx. However, a significant rise in battery temperature is observed when we increase Sy. The scenario becomes different when spacing is varied in the z-direction. An optimum spacing for the minimum temperature of the battery pack is obtained at Sz/Dh = 0.03. The temperature variation trend is almost identical in 3 × 3 × 3 and 4 × 4 × 4 cells; however, the absolute temperature inside the pack is lower in 3 × 3 × 3 cells. In each case, the maximum temperature is seen on the batteries located at the top and bottom corners of the outlet. Among all the cases, the maximum temperature of 355 K has been found in 4 × 4 × 4 cells with a 3.6C discharge rate at Sy/Dh of 0.07133. Different discharging rates (1C, 2C, 3.6C, and 4C) have been considered to generate different amounts of heat inside the battery. However, it is numerically and theoretically proved that Nu and the nondimensional volumetric average temperature inside the pack are independent of the heat generation rate inside the battery pack.

References

1.
Lu
,
Z.
,
Meng
,
X. Z.
,
Wei
,
L. C.
,
Hu
,
W. Y.
,
Zhang
,
L. Y.
, and
Jin
,
L. W.
,
2016
, “
Thermal Management of Densely-Packed EV Battery With Forced Air Cooling Strategies
,”
Energy Procedia
,
88
, pp.
682
688
.10.1016/j.egypro.2016.06.098
2.
Kim
,
J.
,
Oh
,
J.
, and
Lee
,
H.
,
2019
, “
Review on Battery Thermal Management System for Electric Vehicles
,”
Appl. Therm. Eng.
,
149
, pp.
192
212
.10.1016/j.applthermaleng.2018.12.020
3.
Bukhari
,
S. M. A. S.
,
Maqsood
,
J.
,
Baig
,
M. Q.
,
Ashraf
,
S.
, and
Khan
,
T. A.
,
2015
, “
Comparison of Characteristics–Lead Acid, Nickel Based, Lead Crystal and Lithium Based Batteries
,”
17th UKSim-AMSS International Conference on Modelling and Simulation (UKSim)
, Cambridge, UK, Mar. 25–27, pp.
444
450
.10.1109/UKSim.2015.69
4.
Lowe
,
M.
,
Tokuoka
,
S.
,
Trigg
,
T.
, and
Gereffi
,
G.
,
2010
, “
Lithium-Ion Batteries for Electric Vehicles
,”
Duke University Center on Globalization, Governance and Competitiveness
,
Duke University, Durham, NC
, Report.
5.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
.10.1038/35104644
6.
Yang
,
J. D.
,
Lee
,
B. H.
, and
Kim
,
S. W.
,
2002
, “
Development of Battery Management System for Nickel-Metal Hydride Batteries in Electric Vehicle Applications
,”
J. Power Sources
,
109
(
1
), pp.
1
10
.10.1016/S0378-7753(02)00020-4
7.
Bandhauer
,
T. M.
,
Garimella
,
S.
, and
Fuller
,
T. F.
,
2011
, “
A Critical Review of Thermal Issues in Lithium-Ion Batteries
,”
Electrochem. Soc.
,
158
(
3
), pp.
R1
R25
.10.1149/1.3515880
8.
Smith
,
K.
, and
Wang
,
C. Y.
,
2006
, “
Power and Thermal Characterization of a Lithium-Ion Battery Pack for Hybrid-Electric Vehicles
,”
Power Sources
,
160
(
1
), pp.
662
673
.10.1016/j.jpowsour.2006.01.038
9.
Pistoia
,
G.
ed.,
2010
,
Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market
,
Elsevier
,
Oxford, UK
.
10.
Chen
,
H.-Q.
,
Wang
,
X.
,
He
,
L.
,
Chen
,
P.
,
Wan
,
Y.
,
Yang
,
L.
, and
Jiang
,
S.
,
2016
, “
Chinese Energy and Fuels Research Priorities and Trend: A Bibliometric Analysis
,”
Renew. Sustain Energy Rev.
,
58
, pp.
966
975
.10.1016/j.rser.2015.12.239
11.
Fan
,
L.
,
Khodadadi
,
J. M. M.
, and
Pesaran
,
A.
,
2013
, “
A Parametric Study on Thermal Management of an Air-Cooled Lithium-Ion Battery Module for Plug-in Hybrid Electric Vehicles
,”
J. Power Sources
,
238
, pp.
301
312
.10.1016/j.jpowsour.2013.03.050
12.
Yu
,
K.
,
Yang
,
X.
,
Cheng
,
Y.
, and
Li
,
C.
,
2014
, “
Thermal Analysis and Two Directional Air Flow Thermal Management for Lithium-Ion Battery Pack
,”
J. Power Sources
,
270
, pp.
193
200
.10.1016/j.jpowsour.2014.07.086
13.
Xun
,
J.
,
Liu
,
R.
, and
Jiao
,
K.
,
2013
, “
Numerical and Analytical Modeling of Lithium Ion Battery Thermal Behaviors With Different Cooling Designs
,”
J. Power Sources
,
233
, pp.
47
61
.10.1016/j.jpowsour.2013.01.095
14.
Ruhani
,
B.
,
Abidi
,
A.
,
Hussein
,
A. K.
,
Younis
,
O.
,
Degani
,
M.
, and
Sharifpur
,
M.
,
2022
, “
Numerical Simulation of the Effect of Battery Distance and Inlet and Outlet Length on the Cooling of Cylindrical Lithium-Ion Batteries and Overall Performance of Thermal Management System
,”
J. Energy Storage
,
45
, p.
103714
.10.1016/j.est.2021.103714
15.
Chen
,
H.
,
Abidi
,
A.
,
Hussein
,
A. K.
,
Younis
,
O.
,
Degani
,
M.
, and
Heidarshenas
,
B.
,
2022
, “
Investigation of the Use of Extended Surfaces in Paraffin Wax Phase Change Material in Thermal Management of a Cylindrical Lithium-Ion Battery: Applicable in the Aerospace Industry
,”
J. Energy Storage
,
45
, p.
103685
.10.1016/j.est.2021.103685
16.
Park
,
H.
,
2013
, “
A Design of Air Flow Con for Cooling Lithium Ion Battery in Hybrid Electric Vehicles
,”
J. Power Sources
,
239
, pp.
30
36
.10.1016/j.jpowsour.2013.03.102
17.
Al-Rashed
,
A.
,
Aich
,
W.
,
Kolsi
,
L.
,
Mahian
,
O.
,
Hussein
,
A. K.
, and
Borjini
,
M.
,
2017
, “
Effects of Movable-Baffle on Heat Transfer and Entropy Generation in a Cavity Saturated by CNT Suspenseons: Three-Dimensional Modelling
,”
Entropy
,
19
(
5
), pp.
200
216
.10.3390/e19050200
18.
Al-Rashed
,
A.
,
Kalidasan
,
K.
,
Kolsi
,
L.
,
Velkennedy
,
R.
,
Aydi
,
A.
,
Hussein
,
A. K.
, and
Malekshah
,
E.
,
2018
, “
Mixed Convection and Entropy Generation in a Nanofluid Filled Cubical Open Cavity With a Central Isothermal Block
,”
Int. J. Mech. Sci.
,
135
, pp.
362
375
.10.1016/j.ijmecsci.2017.11.033
19.
Al-Rashed
,
A.
,
Kolsi
,
L.
,
Hussein
,
A. K.
,
Hassen
,
W.
,
Aichouni
,
M.
, and
Borjini
,
M.
,
2017
, “
Numerical Study of Three-Dimensional Natural Convection and Entropy Generation in a Cubical Cavity With Partially Active Vertical Walls
,”
Case Stud. Therm. Eng.
,
10
, pp.
100
110
.10.1016/j.csite.2017.05.003
20.
Shahsavar
,
A.
,
Goodarzi
,
A.
,
Askari
,
I. B.
,
Jamei
,
M.
,
Karbasi
,
M.
, and
Afrand
,
M.
,
2022
, “
The Entropy Generation Analysis of the Influence of Using Fins With Tip Clearance on the Thermal Management of the Batteries With Phase Change Material: Application a New Gradient-Based Ensemble Machine Learning Approach
,”
Eng. Anal. Bound Elem.
,
140
, pp.
432
446
.10.1016/j.enganabound.2022.04.024
21.
Sato
,
N.
,
2001
, “
Thermal Behavior Analysis of Lithium-Ion Batteries for Electric and Hybrid Vehicles
,”
J. Power Sources
,
99
(
1–2
), pp.
70
77
.10.1016/S0378-7753(01)00478-5
22.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
12
.10.1149/1.2113792
23.
Saw
,
L. H.
,
Ye
,
Y.
,
Tay
,
A. A.
,
Chong
,
W. T.
,
Kuan
,
S. H.
, and
Yew
,
M. C.
,
2016
, “
Computational Fluid Dynamic and Thermal Analysis of Lithium-Ion Battery Pack With Air Cooling
,”
Appl. Energy
,
177
, pp.
783
792
.10.1016/j.apenergy.2016.05.122
24.
Bejan
,
A.
,
2004
,
Convective Heat Transfer
, 3rd ed.,
Wiley
,
India
.
25.
Acharya
,
S.
, and
Dash
,
S. K.
,
2021
, “
Natural Convection and Entropy Generation in a Porous Enclosure Filled With non-Newtonian Nanofluid
,”
J. Thermophys. Heat. Trans.
,
35
(
3
), pp.
438
458
.10.2514/1.T6126
26.
Acharya
,
S.
, and
Dash
,
S. K.
,
2019
, “
Natural Convection in a Cavity With Undulated Walls Filled With Water-Based non-Newtonian Power-Law CuO–Water Nanofluid Under the Influence of the External Magnetic Field
,”
Numer. Heat Transf. A
,
76
(
7
), pp.
552
575
.10.1080/10407782.2019.1644898
27.
Ansys Fluent
,
2006
, Release 14.0, User Manual,
Fluent Inc.
,
Canonsburg, PA
.
28.
Huang
,
Y.
,
Lu
,
Y.
,
Huang
,
R.
,
Chen
,
J.
,
Chen
,
F.
,
Liu
,
Z.
,
Yu
,
X.
, and
Roskilly
,
A. P.
,
2017
, “
Study on the Thermal Interaction and Heat Dissipation of Cylindrical Lithium-Ion Battery Cells
,”
Energy Procedia
,
142
, pp.
4029
4036
.10.1016/j.egypro.2017.12.321
You do not currently have access to this content.