Abstract

In this paper, a novel sinusoidal wavy mini-channel heat sink (MCHS) with interconnectors (IC w-MCHS) has been introduced, and the effectiveness of the proposed heat sink over conventional mini-channel heat sink (s-MCHS) has been numerically investigated. Different parameters, i.e., wavelengths, wave amplitudes, and phase shifts of the proposed sinusoidal wavy MCHS, were varied to study its effect on thermal and hydraulic performance. This study used three different wavelengths, three different amplitudes, and two different phase shifts, and Reynolds number (Re) varied from 300 to 800. The Nusselt number (Nu) of IC w-MCHS increased as the wave amplitude ratio (α) and Re increased, whereas it increased with the decrement of the wavelength ratio (β). Nu of the IC w-MCHS was also found to depend on phase shift (θp); for θp = π, the chaotic advection and increment of flow reversal were observed in the IC w-MCHS compared to θp = 0, resulting in higher Nu and higher pressure drop penalty. Nu of the IC w-MCHS was found to be 115% higher compared to s-MCHS at Re 550, θp = π, and α = 0.3, whereas it was found 77% higher for θp = 0. The maximum temperature of the IC w-MCHS heat sink was also found to decrease compared to that of the s-MCHS due to enhanced coolant mixing. A maximum 26% decrease in the heat sink temperature was observed for the IC w-MCHS at Re 800 compared to the s-MCHS.

References

1.
Tuckerman
,
D.
, and
Pease
,
R.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
2.
Phillips
,
R. J.
,
1988
, “
Microchannel Heat Sinks
,”
Lincoln Lab. J.
,
1
(
1
), pp.
31
48
.https://www.osti.gov/biblio/6179457
3.
Zhang
,
H. Y.
,
Pinjala
,
D.
,
Wong
,
T. N.
,
Toh
,
K. C.
, and
Joshi
,
Y. K.
,
2005
, “
Single-Phase Liquid Cooled Microchannel Heat Sink for Electronic Packages
,”
Appl. Therm. Eng.
,
25
(
10
), pp.
1472
1487
.10.1016/j.applthermaleng.2004.09.014
4.
Shah
,
R. K.
, and
London
,
A. L.
,
2014
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic Press
, Cambridge, MA.10.1016/C2013-0-06152-X
5.
Ghani
,
I. A.
,
Sidik
,
N. A. C.
,
Mamat
,
R.
,
Najafi
,
G.
,
Ken
,
T. L.
,
Asako
,
Y.
, and
Japar
,
W. M. A. A.
,
2017
, “
Heat Transfer Enhancement in Microchannel Heat Sink Using Hybrid Technique of Ribs and Secondary Channels
,”
Int. J. Heat Mass Transfer
,
114
, pp.
640
655
.10.1016/j.ijheatmasstransfer.2017.06.103
6.
Zheng
,
Z.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2013
, “
Laminar Heat Transfer Simulations for Periodic Zigzag Semicircular Channels: Chaotic Advection and Geometric Effects
,”
Int. J. Heat Mass Transfer
,
62
, pp.
391
401
.10.1016/j.ijheatmasstransfer.2013.02.073
7.
Lu
,
H.
,
Xu
,
M.
,
Gong
,
L.
,
Duan
,
X.
, and
Chai
,
J. C.
,
2020
, “
Effects of Surface Roughness in Microchannel With Passive Heat Transfer Enhancement Structures
,”
Int. J. Heat Mass Transfer
,
148
, p.
119070
.10.1016/j.ijheatmasstransfer.2019.119070
8.
Shuvo
,
A. A.
,
Morshed
,
A. M.
,
Emon
,
M. S. A.
,
Tikadar
,
A.
, and
Paul
,
T. C.
,
2019
, “
Heat Transfer Characteristics of a Phase Change Material Fluid in Microchannels Under Pulsating Flow Condition
,”
ASME
Paper No. HT2019-3608.10.1115/HT2019-3608
9.
Saeed
,
M.
, and
Kim
,
M.-H.
,
2018
, “
Heat Transfer Enhancement Using Nanofluids (Al2O3-H2O) in Mini-Channel Heatsinks
,”
Int. J. Heat Mass Transfer
,
120
, pp.
671
682
.10.1016/j.ijheatmasstransfer.2017.12.075
10.
Oudah
,
S. K.
,
Tikadar
,
A.
,
Fang
,
R.
,
Egab
,
K.
, and
Khan
,
J. A.
,
2018
, “
Thermohydraulic Characteristics of a Knurled Microchannel Heat Sink in Single Phase Regime
,”
Proceedings of Third Thermal and Fluids Engineering Conference
(
TFEC
), Fort Lauderdale, FL, Mar. 4–7.10.1615/TFEC2018.hte.021674
11.
Wu
,
H. Y.
, and
Cheng
,
P.
,
2003
, “
An Experimental Study of Convective Heat Transfer in Silicon Microchannels With Different Surface Conditions
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2547
2556
.10.1016/S0017-9310(03)00035-8
12.
Chai
,
L.
,
Xia
,
G.
,
Zhou
,
M.
,
Li
,
J.
, and
Qi
,
J.
,
2013
, “
Optimum Thermal Design of Interrupted Microchannel Heat Sink With Rectangular Ribs in the Transverse Microchambers
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
880
889
.10.1016/j.applthermaleng.2012.10.037
13.
Japar
,
W. M. A. A.
,
Sidik
,
N. A. C.
, and
Mat
,
S.
,
2018
, “
A Comprehensive Study on Heat Transfer Enhancement in Microchannel Heat Sink With Secondary Channel
,”
Int. Commun. Heat Mass Transfer
,
99
, pp.
62
81
.10.1016/j.icheatmasstransfer.2018.10.005
14.
Tikadar
,
A.
,
Oudah
,
S. K.
,
Paul
,
T. C.
,
Salman
,
A. S.
,
Morshed
,
A. M.
, and
Khan
,
J. A.
,
2019
, “
Parametric Study on Thermal and Hydraulic Characteristics of Inter-Connected Parallel and Counter Flow Mini-Channel Heat Sink
,”
Appl. Therm. Eng.
,
153
, pp.
15
28
.10.1016/j.applthermaleng.2019.02.007
15.
Tikadar
,
A.
,
Paul
,
T. C.
,
Oudah
,
S. K.
,
Abdulrazzaq
,
N. M.
,
Salman
,
A. S.
, and
Khan
,
J. A.
,
2020
, “
Enhancing Thermal-Hydraulic Performance of Counter Flow Mini-Channel Heat Sinks Utilizing Secondary Flow: Numerical Study With Experimental Validation
,”
Int. Commun. Heat Mass Transfer
,
111
, p.
104447
.10.1016/j.icheatmasstransfer.2019.104447
16.
Sui
,
Y.
,
Teo
,
C. J.
,
Lee
,
P. S.
,
Chew
,
Y. T.
, and
Shu
,
C.
,
2010
, “
Fluid Flow and Heat Transfer in Wavy Microchannels
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2760
2772
.10.1016/j.ijheatmasstransfer.2010.02.022
17.
Mohammed
,
H. A.
,
Gunnasegaran
,
P.
, and
Shuaib
,
N. H.
,
2011
, “
Numerical Simulation of Heat Transfer Enhancement in Wavy Microchannel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
38
(
1
), pp.
63
68
.10.1016/j.icheatmasstransfer.2010.09.012
18.
Rostami
,
J.
,
Abbassi
,
A.
, and
Saffar-Avval
,
M.
,
2015
, “
Optimization of Conjugate Heat Transfer in Wavy Walls Microchannels
,”
Appl. Therm. Eng.
,
82
, pp.
318
328
.10.1016/j.applthermaleng.2015.02.069
19.
Hung
,
T.-C.
, and
Yan
,
W.-M.
,
2012
, “
Effects of Tapered-Channel Design on Thermal Performance of Microchannel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
39
(
9
), pp.
1342
1347
.10.1016/j.icheatmasstransfer.2012.08.008
20.
Sui
,
Y.
,
Lee
,
P. S.
, and
Teo
,
C. J.
,
2011
, “
An Experimental Study of Flow Friction and Heat Transfer in Wavy Microchannels With Rectangular Cross Section
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2473
2482
.10.1016/j.ijthermalsci.2011.06.017
21.
Gong
,
L. J.
,
Kota
,
K.
,
Tao
,
W.
, and
Joshi
,
Y.
,
2011
, “
Thermal Performance of Microchannels With Wavy Walls for Electronics Cooling
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
1
(
7
), pp.
1029
1035
.10.1109/TCPMT.2011.2125963
22.
Sakanova
,
A.
,
Keian
,
C. C.
, and
Zhao
,
J.
,
2015
, “
Performance Improvements of Microchannel Heat Sink Using Wavy Channel and Nanofluids
,”
Int. J. Heat Mass Transfer
,
89
, pp.
59
74
.10.1016/j.ijheatmasstransfer.2015.05.033
23.
Lin
,
L.
,
Zhao
,
J.
,
Lu
,
G.
,
Wang
,
X. D.
, and
Yan
,
W. M.
,
2017
, “
Heat Transfer Enhancement in Microchannel Heat Sink by Wavy Channel With Changing Wavelength/Amplitude
,”
Int. J. Therm. Sci.
,
118
, pp.
423
434
.10.1016/j.ijthermalsci.2017.05.013
24.
Gong
,
L.
,
Kota
,
K.
,
Tao
,
W.
, and
Joshi
,
Y.
,
2011
, “
Parametric Numerical Study of Flow and Heat Transfer in Microchannels With Wavy Walls
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
133
(
5
), p. 051702.10.1115/1.4003284
25.
Khoshvaght-Aliabadi
,
M.
,
Abbaszadeh
,
A.
, and
Rashidi
,
M. M.
,
2022
, “
Comparison of Co- and Counter-Current Modes of Operation for Wavy Minichannel Heat Sinks (WMHSs)
,”
Int. J. Therm. Sci.
,
171
, p.
107189
.10.1016/j.ijthermalsci.2021.107189
26.
Wang
,
S.-L.
,
Chen
,
L.-Y.
,
Zhang
,
B.-X.
,
Yang
,
Y.-R.
, and
Wang
,
X.-D.
,
2020
, “
A New Design of Double‐Layered Microchannel Heat Sinks With Wavy Microchannels and Porous‐Ribs
,”
J. Therm. Anal. Calorim.
,
141
(
1
), pp.
547
558
.10.1007/s10973-020-09317-3
27.
Wang
,
S.-L.
,
An
,
D.
,
Yang
,
Y.-R.
,
Zheng
,
S.-F.
,
Wang
,
X.-D.
, and
Lee
,
D.-J.
,
2023
, “
Heat Transfer and Flow Characteristics in Symmetric and Parallel Wavy Microchannel Heat Sinks With Porous Ribs
,”
Int. J. Therm. Sci.
,
185
, p.
108080
.10.1016/j.ijthermalsci.2022.108080
28.
Wang
,
S.-L.
,
Zhu
,
J.-F.
,
An
,
D.
,
Zhang
,
B.-X.
,
Chen
,
L.-Y.
,
Yang
,
Y.-R.
,
Zheng
,
S.-F.
, and
Wang
,
X.-D.
,
2022
, “
Heat Transfer Enhancement of Symmetric and Parallel Wavy Microchannel Heat Sinks With Secondary Branch Design
,”
Int. J. Therm. Sci.
,
171
, p.
107229
.10.1016/j.ijthermalsci.2021.107229
29.
Zhu
,
J.-F.
,
Li
,
X.-Y.
,
Wang
,
S.-L.
,
Yang
,
Y.-R.
, and
Wang
,
X.-D.
,
2019
, “
Performance Comparison of Wavy Microchannel Heat Sinks With Wavy Bottom Rib and Side Rib Designs
,”
Int. J. Therm. Sci.
,
146
, p.
106068
.10.1016/j.ijthermalsci.2019.106068
30.
Fan
,
Y.
,
Lee
,
P. S.
,
Jin
,
L.-W.
, and
Chua
,
B. W.
,
2013
, “
A Simulation and Experimental Study of Fluid Flow and Heat Transfer on Cylindrical Oblique-Finned Heat Sink
,”
Int. J. Heat Mass Transfer
,
61
, pp.
62
72
.10.1016/j.ijheatmasstransfer.2013.01.075
31.
Ho
,
C. J.
, and
Chen
,
W. C.
,
2013
, “
An Experimental Study on Thermal Performance of Al2O3/Water Nanofluid in a Minichannel Heat Sink
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
516
522
.10.1016/j.applthermaleng.2012.07.037
32.
Shah
,
R.
,
1975
, “
Thermal Entry Length Solutions for the Circular Tube and Parallel Plates
,” Proceedings of Third National Heat and Mass Transfer Conference, Vol. 1,
Indian Institute of Technology
, Bombay, p. HMT 11–75.
33.
Xiao
,
H.
,
Liu
,
Z.
, and
Liu
,
W.
,
2021
, “
Conjugate Heat Transfer Enhancement in the Mini-Channel Heat Sink by Realizing the Optimized Flow Pattern
,”
Appl. Therm. Eng.
,
182
, p.
116131
.10.1016/j.applthermaleng.2020.116131
You do not currently have access to this content.