Abstract

Because of their effectiveness and adaptability, impinging jets have found their way into a host of applications ranging from cooling turbine blades, to heat management of electronic systems. With constantly increasing demand for efficient and compact cooling systems in certain industries, such as the aerospace or electronics industries, variations on the textbook-setup of an impinging jet have been studied over the years. One such variation introduces a periodic disturbance into the jet that can have an effect on both the structure of flow and the thermal boundary layer at the target surface. In what follows is a short overview of studies having used pulsed jets, often in tandem with other modifications, to try and improve heat transfer. Special attention was also given to the methods by which the periodic disturbance can be produced since they involve setups of different levels of complexity and having different implementation costs.

References

1.
Michael Walsh
,
S.
,
2018
, “
Microjet Impingement Cooling of High Power-Density Electronics
,”
Ph.D. thesis
,
Massachussets Institute of Technology
, Cambridge, MA.http://dspace.mit.edu/bitstream/handle/1721.1/118677/1057363012-MIT.pdf?sequence=1
2.
Herr
,
F.
, and
Camci
,
C.
,
1997
, “
Self-Oscillating-Impinging-Jet as a Gas Turbine Cooling Enhancement System
,”
ASME
Paper No. 97-GT-330.10.1115/97-GT-330
3.
Yazici
,
H.
,
Akcay
,
M.
,
Golcu
,
M.
,
Koseoglu
,
M. F.
, and
Sekmen
,
Y.
,
2015
, “
Experimental Investigation of Transient Temperature Distribution and Heat Transfer by Jet Impingement in Glass Tempering Processing
,”
Iran. J. Sci. Technol.-Trans. Mech. Eng.
,
39
(
M2
), pp.
337
349
.https://www.researchgate.net/publication/289916329_Experimental_investigation_of_transient_temperature_distribution_and_heat_transfer_by_jet_impingement_in_glass_tempering_processing
4.
Daniel
,
T. H.
,
New
,
Simon
., and
C. M.
,
Yu
,
2015
,
Vortex Rings and Jets: Recent Developments in Near-Field Dynamics
,
Springer Singapore
,
Singapore
.
5.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
6.
Ekkad
,
S. V.
, and
Singh
,
P.
,
2021
, “
A Modern Review on Jet Impingement Heat Transfer Methods
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
6
), pp.
1
15
.10.1115/1.4049496
7.
Ostermann
,
F.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2015
, “
Phase-Averaging Methods for the Natural Flowfield of a Fluidic Oscillator
,”
AIAA J.
,
53
(
8
), pp.
2359
2368
.10.2514/1.J053717
8.
Zhou
,
W.
,
Yuan
,
L.
,
Liu
,
Y.
,
Peng
,
D.
, and
Wen
,
X.
,
2019
, “
Heat Transfer of a Sweeping Jet Impinging at Narrow Spacings
,”
Exp. Therm. Fluid Sci.
,
103
, pp.
89
98
.10.1016/j.expthermflusci.2019.01.007
9.
Walimbe
,
P.
,
Agrawal
,
A.
, and
Chaudhari
,
M. B.
,
2021
, “
Flow Characteristics and Novel Applications of Synthetic Jets - A Review
,”
ASME J. Heat Mass Transfer-Trans. ASME
, epub.10.1115/1.4051326
10.
Arshad
,
A.
,
Jabbal
,
M.
, and
Yan
,
Y.
,
2020
, “
Synthetic Jet Actuators for Heat Transfer Enhancement – a Critical Review
,”
Int. J. Heat Mass Transfer
,
146
, p.
118815
.10.1016/j.ijheatmasstransfer.2019.118815
11.
Béra
,
J. C.
,
Michard
,
M.
,
Grosjean
,
N.
, and
Comte-Bellot
,
G.
,
2001
, “
Flow Analysis of Two-Dimensional Pulsed Jets by Particle Image Velocimetry
,”
Exp. Fluids
,
31
(
5
), pp.
519
532
.10.1007/s003480100314
12.
Saliba
,
G.
,
2022
, “
Study and Development of Fluidic Micro-Oscillators for Cooling Electronic Systems
,”
Thesis
,
Université Paul Sabatier
-
Toulouse III
, Toulouse, France.https://theses.hal.science/tel-03814670/file/2022TOU30097b.pdf
13.
Leconte
,
J.
,
1858
, “
On the Influence of Musical Sounds on the Flame of a Jet of Coal-Gas
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
15
(
99
), pp.
235
239
.10.1080/14786445808642470
14.
Plateau
,
J.
,
1857
, “
I. Experimental and Theoretical Researches on the Figures of Equilibrium of a Liquid Mass Withdrawn From the Action of Gravity. – Third Series
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
14
(
90
), pp.
1
22
.10.1080/14786445708642346
15.
Michalke
,
A.
,
1984
, “
Survey on Jet Instability Theory
,”
Prog. Aerosp. Sci.
,
21
(
C
), pp.
159
199
.10.1016/0376-0421(84)90005-8
16.
Farrington
,
R. B.
, and
Claunch
,
S. D.
,
1994
, “
Infrared Imaging of Large-Amplitude, Low-Frequency Disturbances on a Planar Jet
,”
AIAA J.
,
32
(
2
), pp.
317
323
.10.2514/3.11987
17.
Burmeister
,
L. C.
,
1959
, “
Heat Transfer Between a Plane Surface and a Pulsating, Perpendicularly Impinging Air Jet
,” Kansas State University, Manhattan, KS.
18.
Nevins
,
R. G.
, and
Ball
,
H. D.
,
1961
, “
Heat Transfer Between a Flat Plate and a Pulsating Impinging Jet
,”
Proceedings of the National Heat Transfer Conference
, Boulder, CO, pp.
510
516
.
19.
Cochrane
,
G. F.
, and
Nevins
,
R. G.
,
1962
, “
Paper N–5: Photographic Investigation of a Pulsating Air Jet Impinging on a Heated Plate
,”
J. SMPTE
,
71
(
1A
), pp.
510
512
.10.5594/J18188XY
20.
Ghadi
,
S.
,
Esmailpour
,
K.
,
Hosseinalipour
,
M.
, and
Kalantar
,
M.
,
2016
, “
Dynamical Study of Pulsed Impinging Jet With Time Varying Heat Flux Boundary Condition
,”
Heat Transfer-Asian Res.
,
45
(
1
), pp.
85
100
.10.1002/htj.21154
21.
Rizk
,
M. H.
, and
Menon
,
S.
,
1988
, “
Large-Eddy Simulations of Axisymmetric Excitation Effects on a Row of Impinging Jets
,”
Phys. Fluids
,
31
(
7
), pp.
1892
1903
.10.1063/1.866636
22.
Cerna Mladin
,
E.
, and
Zumbrunnen
,
D. A.
,
2000
, “
Alterations to Coherent Flow Structures and Heat Transfer Due to Pulsations in an Impinging Air-Jet
,”
Int. J. Therm. Sci.
,
39
(
2
), pp.
236
248
.10.1016/S1290-0729(00)00242-8
23.
Liu
,
T.
, and
Sullivan
,
J. P.
,
1996
, “
Heat Transfer and Flow Structures in an Excited Circular Impinging Jet
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3695
3706
.10.1016/0017-9310(96)00027-0
24.
Varieras
,
D.
,
Brancher
,
P.
, and
Giovannini
,
A.
,
2006
, “
Self-Sustained Oscillations of a Confined Impinging Jet
,”
Flow, Turbul. Combust.
,
78
(
1
), pp.
1
15
.10.1007/s10494-006-9017-7
25.
Conlon
,
B. P.
, and
Lichter
,
S.
,
1995
, “
Dipole Formation in the Transient Planar Wall Jet
,”
Phys. Fluids
,
7
(
5
), pp.
999
1014
.10.1063/1.868575
26.
Hubble
,
D. O.
,
Vlachos
,
P. P.
, and
Diller
,
T. E.
,
2013
, “
The Role of Large-Scale Vortical Structures in Transient Convective Heat Transfer Augmentation
,”
J. Fluid Mech.
,
718
, pp.
89
115
.10.1017/jfm.2012.589
27.
Didden
,
N.
, and
Ho
,
C. M.
,
1985
, “
Unsteady Separation in a Boundary Layer Produced by an Impinging Jet
,”
J. Fluid Mech.
,
160
, pp.
235
256
.10.1017/S0022112085003469
28.
Kataoka
,
K.
,
Suguro
,
M.
,
Degawa
,
H.
,
Maruo
,
K.
, and
Mihata
,
I.
,
1987
, “
The Effect of Surface Renewal Due to Large- Scale Eddies on Jet Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
30
(
3
), pp.
559
567
.10.1016/0017-9310(87)90270-5
29.
Yule
,
A. J.
,
1978
, “
Large-Scale Structure in the Mixing Layer of a Round Jet
,”
J. Fluid Mech.
,
89
(
3
), pp.
413
432
.10.1017/S0022112078002670
30.
Popiel
,
C. O.
, and
Trass
,
O.
,
1991
, “
Visualization of a Free and Impinging Round Jet
,”
Exp. Therm. Fluid Sci.
,
4
(
3
), pp.
253
264
.10.1016/0894-1777(91)90043-Q
31.
Ghadi
,
S.
,
Esmailpour
,
K.
,
Hosseinalipour
,
S. M.
, and
Mujumdar
,
A.
,
2016
, “
Experimental Study of Formation and Development of Coherent Vortical Structures in Pulsed Turbulent Impinging Jet
,”
Exp. Therm. Fluid Sci.
,
74
, pp.
382
389
.10.1016/j.expthermflusci.2015.12.007
32.
Martin Hofmann
,
H.
,
Movileanu
,
D. L.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Influence of a Pulsation on Heat Transfer and Flow Structure in Submerged Impinging Jets
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3638
3648
.10.1016/j.ijheatmasstransfer.2007.02.001
33.
Janetzke
,
T.
,
Nitsche
,
W.
, and
Tage
,
J.
,
2008
, “
Experimental Investigations of Flow Field and Heat Transfer Characteristics Due to Periodically Pulsating Impinging Air Jets
,”
Heat Mass Transfer/Waerme-Und Stoffuebertragung
,
45
(
2
), pp.
193
206
.10.1007/s00231-008-0410-8
34.
Geng
,
L.
,
Zheng
,
C.
, and
Zhou
,
J.
,
2015
, “
Heat Transfer Characteristics of Impinging Jets: The Influence of Unsteadiness With Different Waveforms
,”
Int. Commun. Heat Mass Transfer
,
66
, pp.
105
113
.10.1016/j.icheatmasstransfer.2015.05.017
35.
Chaniotis
,
A. K.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
,
2003
, “
Dual Pulsating or Steady Slot Jet Cooling of a Constant Heat Flux Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
125
(
4
), pp.
575
586
.10.1115/1.1571093
36.
Sailor
,
D. J.
,
Rohli
,
D. J.
, and
Fu
,
Q.
,
1999
, “
Effect of Variable Duty Cycle Flow Pulsations on Heat Transfer Enhancement for an Impinging Air Jet
,”
Int. J. Heat Fluid Flow
,
20
(
6
), pp.
574
580
.10.1016/S0142-727X(99)00055-7
37.
Mohammadpour
,
J.
,
Rajabi-Zargarabadi
,
M.
,
Mujumdar
,
A. S.
, and
Ahmadi
,
H.
,
2014
, “
Effect of Intermittent and Sinusoidal Pulsed Flows on Impingement Heat Transfer From a Concave Surface
,”
Int. J. Therm. Sci.
,
76
, pp.
118
127
.10.1016/j.ijthermalsci.2013.08.018
38.
Behera
,
R. C.
,
Dutta
,
P.
, and
Srinivasan
,
K.
,
2007
, “
Numerical Study of Interrupted Impinging Jets for Cooling of Electronics
,”
IEEE Trans. Compon. Packaging Technol.
,
30
(
2
), pp.
275
284
.10.1109/TCAPT.2007.898353
39.
Zulkifli
,
R.
,
Benard
,
E.
,
Raghunathan
,
S.
, and
Linton
,
A.
,
2004
, “
Effect of Pulse Jet Frequency on Impingement Heat Transfer
,”
AIAA
Paper No.
2004
1343
.10.2514/6.2004-1343
40.
Azevedo
,
L. F. A.
,
Webb
,
B. W.
, and
Queiroz
,
M.
,
2015
,
Vortex Rings and Jets
, Fluid Mechanics and Its Applications, Vol.,
111
,
Springer Singapore, Singapore
.
41.
Eschmann
,
G.
,
Kuntze
,
A.
,
Uffrecht
,
W.
,
Kaiser
,
E.
, and
Odenbach
,
S.
,
2015
, “
Experimental and Numerical Investigation of Heat Transfer Coefficients in Gaseous Impinging Jets – First Test of a Recent Sensor Concept for Steady and Unsteady Flow
,”
Int. J. Therm. Sci.
,
96
, pp.
290
304
.10.1016/j.ijthermalsci.2015.03.016
42.
Pakhomov
,
M. A.
, and
Terekhov
,
V. I.
,
2013
, “
Effect of Pulse Frequency on Heat Transfer at the Stagnation Point of an Impinging Turbulent Jet
,”
High Temp.
,
51
(
2
), pp.
256
261
.10.1134/S0018151X13020156
43.
Pakhomov
,
M. A.
, and
Terekhov
,
V. I.
,
2015
, “
Numerical Study of Fluid Flow and Heat Transfer Characteristics in an Intermittent Turbulent Impinging Round Jet
,”
Int. J. Therm. Sci.
,
87
, pp.
85
93
.10.1016/j.ijthermalsci.2014.08.007
44.
Herwig
,
H.
, and
Middelberg
,
G.
,
2008
, “
The Physics of Unsteady Jet Impingement and Its Heat Transfer Performance
,”
Acta Mech.
,
201
(
1–4
), pp.
171
184
.10.1007/s00707-008-0080-0
45.
Middelberg
,
G.
, and
Herwig
,
H.
,
2009
, “
Convective Heat Transfer Under Unsteady Impinging Jets: The Effect of the Shape of the Unsteadiness
,”
Heat Mass Transfer/Waerme- Und Stoffuebertragung
,
45
(
12
), pp.
1519
1532
.10.1007/s00231-009-0527-4
46.
Xu
,
P.
,
Yu
,
B.
,
Qiu
,
S.
,
Poh
,
H. J.
, and
Mujumdar
,
A. S.
,
2010
, “
Turbulent Impinging Jet Heat Transfer Enhancement Due to Intermittent Pulsation
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1247
1252
.10.1016/j.ijthermalsci.2010.01.020
47.
Mladin
,
E. C.
, and
Zumbrunnen
,
D. A.
,
1994
, “
Nonlinear Dynamics of Laminar Boundary Layers in Pulsatile Stagnation Flows
,”
J. Thermophys. Heat Transfer
,
8
(
3
), pp.
514
523
.10.2514/3.573
48.
Mladin
,
E. C.
, and
Zumbrunnen
,
D. A.
,
1995
, “
Dependence of Heat Transfer to a Pulsating Stagnation Flow on Pulse Characteristics
,”
J. Thermophys. Heat Transfer
,
9
(
1
), pp.
181
192
.10.2514/3.645
49.
Mladin
,
E. C.
, and
Zumbrunnen
,
D. A.
,
1997
, “
Local Convective Heat Transfer to Submerged Pulsating Jets
,”
Int. J. Heat Mass Transfer
,
40
(
14
), pp.
3305
3321
.10.1016/S0017-9310(96)00380-8
50.
Zumbrunnen
,
D. A.
, and
Aziz
,
M.
,
1993
, “
Convective Heat Transfer Enhancement Due to Intermittency in an Impinging Jet
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
115
(
1
), pp.
91
98
.10.1115/1.2910675
51.
Zumbrunnen
,
D. A.
,
1992
, “
Transient Convective Heat Transfer in Planar Stagnation Flows With Time-Varying Surface Heat Flux and Temperature
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
114
(
1
), pp.
85
93
.10.1115/1.2911272
52.
Schlichting
,
H.
,
2017
, “
Boundary Layer Theory
,” Springer Berlin, Heidelberg.
53.
O'Donovan
,
T. S.
, and
Murray
,
D. B.
,
2007
, “
Effect of Acoustic Excitation on the Heat Transfer to an Impinging Air Jet
,”
ASME
Paper No. HT2007-32800. 10.1115/HT2007-32800
54.
O'Donovan
,
T. S.
, and
Murray
,
D. B.
,
2007
, “
Jet Impingement Heat transfer - Part II: A Temporal Investigation of Heat Transfer and Local Fluid Velocities
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3302
3314
.10.1016/j.ijheatmasstransfer.2007.01.047
55.
O'Donovan
,
T. S.
, and
Murray
,
D. B.
,
2007
, “
Jet Impingement Heat transfer - Part I: Mean and Root-Mean-Square Heat Transfer and Velocity Distributions
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3291
3301
.10.1016/j.ijheatmasstransfer.2007.01.044
56.
Roux
,
S.
,
Fénot
,
M.
,
Lalizel
,
G.
,
Brizzi
,
L. E.
, and
Dorignac
,
E.
,
2011
, “
Experimental Investigation of the Flow and Heat Transfer of an Impinging Jet Under Acoustic Excitation
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3277
3290
.10.1016/j.ijheatmasstransfer.2011.03.059
57.
Uddin
,
N.
,
Neumann
,
S. O.
, and
Weigand
,
B.
,
2013
, “
LES Simulations of an Impinging Jet: On the Origin of the Second Peak in the Nusselt Number Distribution
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
356
368
.10.1016/j.ijheatmasstransfer.2012.10.052
58.
Hwang
,
S. D.
,
Lee
,
C. H.
, and
Cho
,
H. H.
,
2001
, “
Heat Transfer and Flow Structures in Axisymmetric Impinging Jet Controlled by Vortex Pairing
,”
Int. J. Heat Fluid Flow
,
22
(
3
), pp.
293
300
.10.1016/S0142-727X(01)00091-1
59.
Hwang
,
S. D.
, and
Cho
,
H. H.
,
2003
, “
Effects of Acoustic Excitation Positions on Heat Transfer and Flow in Axisymmetric Impinging Jet: Main Jet Excitation and Shear Layer Excitation
,”
Int. J. Heat Fluid Flow
,
24
(
2
), pp.
199
209
.10.1016/S0142-727X(02)00236-9
60.
Vejrazka
,
J.
,
Tihon
,
J.
,
Marty
,
P.
, and
Sobolík
,
V.
,
2005
, “
Effect of an External Excitation on the Flow Structure in a Circular Impinging Jet
,”
Phys. Fluids
,
17
(
10
), p.
105102
.10.1063/1.2084207
61.
Hsu
,
C. M.
,
Jhan
,
W. C.
, and
Chang
,
Y. Y.
,
2020
, “
Flow and Heat Transfer Characteristics of a Pulsed Jet Impinging on a Flat Plate
,”
Heat Mass Transfer/Waerme- Und Stoffuebertragung
,
56
(
1
), pp.
143
160
.10.1007/s00231-019-02696-w
62.
Sheriff
,
H. S.
, and
Zumbrunnen
,
D. A.
,
1999
, “
Local and Instantaneous Heat Transfer Characteristics of Arrays of Pulsating Jets
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
121
(
2
), pp.
341
348
.10.1115/1.2825986
63.
Mohammadpour
,
J.
,
Zolfagharian
,
M. M.
,
Mujumdar
,
A. S.
,
Zargarabadi
,
M. R.
, and
Abdulahzadeh
,
M.
,
2014
, “
Heat Transfer Under Composite Arrangement of Pulsed and Steady Turbulent Submerged Multiple Jets Impinging on a Flat Surface
,”
Int. J. Therm. Sci.
,
86
, pp.
139
147
.10.1016/j.ijthermalsci.2014.07.004
64.
Martin Hofmann
,
H.
,
Kaiser
,
R.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Calculations of Steady and Pulsating Impinging Jets - An Assessment of 13 Widely Used Turbulence Models
,”
Numer. Heat Transfer, Part B: Fundam.
,
51
(
6
), pp.
565
583
.10.1080/10407790701227328
65.
Reynolds
,
W. C.
, and
Hussain
,
A. K. M. F.
,
1972
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow. Part 3. Theoretical Models and Comparisons With Experiments
,”
J. Fluid Mech.
,
54
(
2
), pp.
263
288
.10.1017/S0022112072000679
66.
Berthold
,
A.
, and
Haucke
,
F.
,
2020
, “
Influence of Excitation Frequency, Phase Shift, and Duty Cycle on Cooling Ratio in a Dynamically Forced Impingement Jet Array
,”
ASME J. Turbomach.
,
142
(
5
), p. 051001.10.1115/1.4046616
67.
Berthold
,
A.
,
Haucke
,
F.
, and
Weiss
,
J.
,
2020
, “
Flow Field Analysis of a Dynamically Forced Impingement Jet Array
,”
AIAA
Paper No.
2020
2081
.10.2514/6.2020-2081
68.
Alimohammadi
,
S.
,
Dinneen
,
P.
,
Persoons
,
T.
, and
Murray
,
D. B.
,
2014
, “
Thermal Management Using Pulsating Jet Cooling Technology
,”
J. Phys.: Conf. Ser.
,
525
(
1
), p.
012011
.10.1088/1742-6596/525/1/012011
69.
Esmailpour
,
K.
,
Hosseinalipour
,
M.
,
Bozorgmehr
,
B.
, and
Mujumdar
,
A. S.
,
2015
, “
A Numerical Study of Heat Transfer in a Turbulent Pulsating Impinging Jet
,”
Can. J. Chem. Eng.
,
93
(
5
), pp.
959
969
.10.1002/cjce.22169
70.
Marcum
,
W. R.
,
Cadell
,
S. R.
, and
Ward
,
C.
,
2015
, “
The Effect of Jet Location and Duty Cycle on the Fluid Mechanics of an Unconfined Free Jet and Its Heat Transfer on an Impinging Plate
,”
Int. J. Heat Mass Transfer
,
88
, pp.
470
480
.10.1016/j.ijheatmasstransfer.2015.04.041
71.
Persoons
,
T.
,
Balgazin
,
K.
,
Brown
,
K.
, and
Murray
,
D. B.
,
2013
, “
Scaling of Convective Heat Transfer Enhancement Due to Flow Pulsation in an Axisymmetric Impinging Jet
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
11
), p.
111012
.10.1115/1.4024620
72.
Kharoua
,
N.
,
Khezzar
,
L.
,
Nemouchi
,
Z.
, and
Alshehhi
,
M.
,
2017
, “
LES Study of the Combined Effects of Groups of Vortices Generated by a Pulsating Turbulent Plane Jet Impinging on a Semi-Cylinder
,”
Appl. Therm. Eng.
,
114
, pp.
948
960
.10.1016/j.applthermaleng.2016.12.047
73.
Rajabi Zargarabadi
,
M.
,
Rezaei
,
E.
, and
Yousefi-Lafouraki
,
B.
,
2018
, “
Numerical Analysis of Turbulent Flow and Heat Transfer of Sinusoidal Pulsed Jet Impinging on an Asymmetrical Concave Surface
,”
Appl. Therm. Eng.
,
128
, pp.
578
585
.10.1016/j.applthermaleng.2017.09.059
74.
Sharif
,
M. A.
, and
Ramirez
,
N. M.
,
2013
, “
Surface Roughness Effects on the Heat Transfer Due to Turbulent Round Jet Impingement on Convex Hemispherical Surfaces
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
1026
1037
.10.1016/j.applthermaleng.2012.10.015
75.
Xu
,
P.
,
Sasmito
,
A.
, and
Mujumdar
,
A.
,
2016
, “
A Computational Study of Heat Transfer Under Twin Turbulent Slot Jets Impinging on Planar Smooth and Rough Surfaces
,”
Therm. Sci.
,
20
(
suppl. 1
), pp.
47
57
.10.2298/TSCI151130016X
76.
Rakhsha
,
S.
,
Zargarabadi
,
M. R.
, and
Saedodin
,
S.
,
2020
, “
Experimental and Numerical Study of Flow and Heat Transfer From a Pulsed Jet Impinging on a Pinned Surface
,”
Exp. Heat Transfer
, pp.
1
16
.10.1080/08916152.2020.1755388
77.
Zhou
,
J. W.
,
Wang
,
Y. G.
,
Middelberg
,
G.
, and
Herwig
,
H.
,
2009
, “
Unsteady Jet Impingement: Heat Transfer on Smooth and Non-Smooth Surfaces
,”
Int. Commun. Heat Mass Transfer
,
36
(
2
), pp.
103
110
.10.1016/j.icheatmasstransfer.2008.10.020
78.
Sanyal
,
A.
,
Srinivasan
,
K.
, and
Dutta
,
P.
,
2009
, “
Numerical Study of Heat Transfer From Pin-Fin Heat Sink Using Steady and Pulsated Impinging Jets
,”
IEEE Trans. Compon. Packaging Technol.
,
32
(
4
), pp.
859
867
.10.1109/TCAPT.2009.2025489
79.
Shyy Woei
,
C.
,
Su
,
L. M.
, and
Zheng
,
Y.
,
2000
, “
Reciprocating Impingement Jet Heat Transfer With Surface Ribs
,”
Exp. Heat Transfer
,
13
, pp.
275
297
.10.1080/08916150050175462
80.
Klein
,
D.
, and
Hetsroni
,
G.
,
2012
, “
Enhancement of Heat Transfer Coefficients by Actuation Against an Impinging Jet
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4183
4194
.10.1016/j.ijheatmasstransfer.2012.03.059
81.
Roux
, S.
,
Brizzi
,
L.-E.
,
Dorignac
,
E.
, and
Fenot
,
M.
,
2011
, “
Impinging Jet Heat Transfer Improvement Using Acoustic Forcing
,”
Turbulence Heat and Mass Transfer 6, Proceedings of the Sixth International Symposium on Turbulence Heat and Mass Transfer
, Rome, Italy, Sept. 14–18, p.
12
.10.1615/ICHMT.2009.TurbulHeatMassTransf
82.
Tang
,
C.
,
Zhang
,
J. Z.
,
Wei Lyu
,
Y.
, and
Tan
,
X. M.
,
2020
, “
Convective Heat Transfer on a Flat Target Surface Impinged by Pulsating Jet With an Additional Transmission Chamber
,”
Heat Mass Transfer/Waerme- Und Stoffuebertragung
,
56
(
1
), pp.
183
205
.10.1007/s00231-019-02702-1
83.
Rakhsha
,
S.
,
Rajabi Zargarabadi
,
M.
, and
Saedodin
,
S.
,
2023
, “
The Effect of Nozzle Geometry on the Flow and Heat Transfer of Pulsed Impinging Jet on the Concave Surface
,”
Int. J. Therm. Sci.
,
184
(
Sep. 2022
), p.
107925
.10.1016/j.ijthermalsci.2022.107925
84.
Lyu
,
Y.
,
Zhao
,
Y-D.
,
Zhang
,
J-y.
,
Zhang
,
J-Z.
,
Shan
,
Y.
, and
Luo
,
X-y.
,
2023
, “
Large Eddy Simulation of Impinging Heat Transfer of Pulsed Chevron Jet on a Semi-Cylindrical Concave Plate
,”
Phys. Fluids
,
35
(
2
), p.
025115
.10.1063/5.0130230
85.
Lyu
,
Y. W.
,
Zhang
,
J. Z.
,
Liu
,
X. C.
, and
Shan
,
Y.
,
2019
, “
Experimental Investigation of Impinging Heat Transfer of the Pulsed Chevron Jet on a Semicylindrical Concave Plate
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
3
), p.
032201
.10.1115/1.4042159
86.
Doty
,
J.
,
Yerkes
,
K.
,
Byrd
,
L.
,
Murthy
,
J.
,
Alleyne
,
A.
,
Wolff
,
M.
,
Heister
,
S.
, and
Fisher
,
T. S.
,
2017
, “
Dynamic Thermal Management for Aerospace Technology: Review and Outlook
,”
J. Thermophys. Heat Transfer
,
31
(
1
), pp.
86
98
.10.2514/1.T4701
87.
Warren
,
R. W.
,
1960
, “Fluid Oscillator,” U.S. Patent No. 3,016,066.
88.
Peszynski
,
K.
,
Smyk
,
E.
,
Wawrzyniak
,
S.
, and
Perczynski
,
D.
,
2016
, “
Research of Vibration Asymmetry of Fluidic Oscillator With Vortex Chambers
,”
EPJ Web Conf.
,
114
, p.
02149
.10.1051/epjconf/201611402149
89.
Spyropoulos
,
C. E.
,
1964
, “
A Sonic Oscillator
,”
Proceedings of Fluidic Amplifier Symposium
, Vol. III, Harry Diamond Labs., May, pp.
27
52
.
90.
Tesar
,
V.
,
2017
, “
Taxonomic Trees of Fluidic Oscillators
,”
EPJ Web Conf.
,
143
, pp.
1
10
.10.1051/epjconf/201714302128
91.
Herwig
,
H.
,
Mocikat
,
H.
,
Gürtler
,
T.
, and
Göppert
,
S.
,
2004
, “
Heat Transfer Due to Unsteadily Impinging Jets
,”
Int. J. Therm. Sci.
,
43
(
8
), pp.
733
741
.10.1016/j.ijthermalsci.2004.02.013
92.
Ten
,
J. S.
, and
Povey
,
T.
,
2019
, “
Self-Excited Fluidic Oscillators for Gas Turbines Cooling Enhancement: Experimental and Computational Study
,”
J. Thermophys. Heat Transfer
,
33
(
2
), pp.
536
547
.10.2514/1.T5261
93.
Tesar
,
V.
,
2009
, “
Enhancing Impinging Jet Heat or Mass Transfer by Fluidically Generated Flow Pulsation
,”
Chem. Eng. Res. Des.
,
87
(
2
), pp.
181
192
.10.1016/j.cherd.2008.08.003
94.
Haneda
,
Y.
,
Tsuchiya
,
Y.
,
Nakabe
,
K.
, and
Suzuki
,
K.
,
1998
, “
Enhancement of Impinging Jet Heat Transfer by Making Use of Mechano-Fluid Interactive Flow Oscillation
,”
Int. J. Heat Fluid Flow
,
19
(
2
), pp.
115
124
.10.1016/S0142-727X(97)10016-9
95.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.10.2514/1.42362
96.
Alimohammadi
,
S.
,
Murray
,
D. B.
, and
Persoons
,
T.
,
2015
, “
On the Numerical-Experimental Analysis and Scaling of Convective Heat Transfer to Pulsating Impinging Jets
,”
Int. J. Therm. Sci.
,
98
, pp.
296
311
.10.1016/j.ijthermalsci.2015.07.022
97.
Olsson
,
M.
, and
Fuchs
,
L.
,
1998
, “
Large Eddy Simulations of a Forced Semiconfined Circular Impinging Jet
,”
Phys. Fluids
,
10
(
2
), pp.
476
486
.10.1063/1.869535
98.
Xu
,
B. P.
,
Wen
,
J. X.
, and
Volkov
,
K. N.
,
2013
, “
Large-Eddy Simulation of Vortical Structures in a Forced Plane Impinging Jet
,”
Eur. J. Mech., B/Fluids
,
42
, pp.
104
120
.10.1016/j.euromechflu.2013.05.004
99.
Uddin
,
N.
,
Neumann
,
S. O.
, and
Weigand
,
B.
,
2016
, “
Heat Transfer Enhancement by Velocity Field Excitation for an Impinging Round Jet
,”
Numer. Heat Transfer; Part A: Appl.
,
69
(
8
), pp.
811
824
.10.1080/10407782.2015.1090840
100.
Lav
,
C.
,
Sandberg
,
R. D.
,
Tanimoto
,
K.
, and
Terakado
,
K.
,
2022
, “
Pulsed Impinging Jets: Momentum and Heat-Transfer
,”
Int. J. Heat Mass Transfer
,
187
, p.
122548
.10.1016/j.ijheatmasstransfer.2022.122548
101.
Haines
,
M.
, and
Taylor
,
I.
,
2019
, “
The Turbulence Modelling of a Pulsed Impinging Jet Using LES and a Divergence Free Mass Flux Corrected Turbulent Inlet
,”
J. Wind Eng. Ind. Aerodyn.
,
188
(
July 2016
), pp.
338
364
.10.1016/j.jweia.2019.03.009
102.
Crow
,
S. C.
, and
Champagne
,
F. H.
,
1971
, “
Orderly Structure in Jet Turbulence
,”
J. Fluid Mech.
,
48
(
3
), pp.
547
591
.10.1017/S0022112071001745
103.
Liu
,
S.
,
Meneveau
,
C.
, and
Katz
,
J.
,
1994
, “
On the Properties of Similarity SGS Models as Deduced From Measurements in a Turbulent Jet
,”
J. Fluid Mech.
,
275
, pp.
83
119
.10.1017/S0022112094002296
104.
Kader
,
B. A.
,
1981
, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
24
(
9
), pp.
1541
1544
.10.1016/0017-9310(81)90220-9
105.
Han
,
Z.
, and
Reitz
,
R. D.
,
1997
, “
A Temperature Wall Function Formulation for Variable-Density Turbulent Flows With Application to Engine Convective Heat Transfer Modeling
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
613
625
.10.1016/0017-9310(96)00117-2
106.
Angelberger
,
C.
,
Poinsot
,
T.
, and
Delhay
,
B.
, oct
1997
, “
Improving Near-Wall Combustion and Wall Heat Transfer Modeling in SI Engine Computations
,”
SAE
Paper No. 972881.10.4271/972881
107.
Kornev
,
N.
, and
Hassel
,
E.
,
2006
, “
Method of Random Spots for Generation of Synthetic Inhomogeneous Turbulent Fields With Prescribed Autocorrelation Functions
,”
Commun. Numer. Methods Eng.
,
23
(
1
), pp.
35
43
.10.1002/cnm.880
108.
Poletto
,
R.
,
Craft
,
T.
, and
Revell
,
A.
,
2013
, “A New Divergence Free Synthetic Eddy Method for the Reproduction of Inlet Flow Conditions for Les,”
Flow, Turbul. Combust.
,
91
(
3
), pp.
519
539
.10.1007/s10494-013-9488-2
109.
Tsubokura
,
M.
,
Kobayashi
,
T.
,
Taniguchi
,
N.
, and
Jones
,
W. P.
,
2003
, “
A Numerical Study on the Eddy Structures of Impinging Jets Excited at the Inlet
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
500
511
.10.1016/S0142-727X(03)00044-4
110.
Kubacki
,
S.
, and
Dick
,
E.
,
2010
, “
Simulation of Plane Impinging Jets With k-ω Based Hybrid RANS/LES Models
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
862
878
.10.1016/j.ijheatfluidflow.2010.04.011
111.
Kubacki
,
S.
,
Rokicki
,
J.
, and
Dick
,
E.
,
2013
, “
Hybrid RANS/LES Computations of Plane Impinging Jets With DES and PANS Models
,”
Int. J. Heat Fluid Flow
,
44
, pp.
596
609
.10.1016/j.ijheatfluidflow.2013.08.014
112.
Manca
,
O.
,
Mesolella
,
P.
,
Nardini
,
S.
, and
Ricci
,
D.
,
2011
, “
Numerical Study of a Confined Slot Impinging Jet With Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
16
.10.1186/1556-276X-6-188
113.
Li
,
P.
,
Guo
,
D.
, and
Liu
,
R.
,
2019
, “
Mechanism Analysis of Heat Transfer and Flow Structure of Periodic Pulsating Nanofluids Slot-Jet Impingement With Different Waveforms
,”
Appl. Therm. Eng.
,
152
(
Jan
.), pp.
937
945
.10.1016/j.applthermaleng.2019.01.086
114.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2014
, “
Pulsating Nanofluids Jet Impingement Cooling of a Heated Horizontal Surface
,”
Int. J. Heat Mass Transfer
,
69
, pp.
54
65
.10.1016/j.ijheatmasstransfer.2013.10.010
115.
Zhang
,
Y.
,
Li
,
P.
, and
Xie
,
Y.
,
2018
, “
Numerical Investigation of Heat Transfer Characteristics of Impinging Synthetic Jets With Different Waveforms
,”
Int. J. Heat Mass Transfer
,
125
, pp.
1017
1027
.10.1016/j.ijheatmasstransfer.2018.04.120
116.
Choi
,
J. J.
,
Annaswamy
,
A. M.
,
Lou
,
H.
, and
Alvi
,
F. S.
,
2006
, “
Active Control of Supersonic Impingement Tones Using Steady and Pulsed Microjets
,”
Exp. Fluids
,
41
(
6
), pp.
841
855
.10.1007/s00348-006-0189-7
117.
Chang
,
C. J.
,
Chen
,
H. T.
, and
Gau
,
C.
,
2013
, “
Flow and Heat Transfer of a Microjet Impinging on a Heated Chip: Part II - Heat Transfer
,”
Nanoscale Microscale Thermophys. Eng.
,
17
(
2
), pp.
92
111
.10.1080/15567265.2012.761304
118.
Browne
,
E. A.
,
Michna
,
G. J.
,
Jensen
,
M. K.
, and
Peles
,
Y.
,
2010
, “
Experimental Investigation of Single-Phase Microjet Array Heat Transfer
,”
ASME J. Heat Mass Transfer
,
132
(
4
), p.
041013
.10.1115/1.4000888
119.
Wang
,
B.
,
Ni
,
J.
,
Litvin
,
Y.
,
Pfaff
,
D. W.
, and
Lin
,
Q.
,
2012
, “
A Microfluidic Approach to Pulsatile Delivery of Drugs for Neurobiological Studies
,”
J. Microelectromech. Syst.
,
21
(
1
), pp.
53
61
.10.1109/JMEMS.2011.2174423
120.
Huang
,
X.
,
Li
,
P.
, and
Tan
,
Y.
,
2022
, “
Analysis of Time-Dependent Heat Transfer of Ellipsoidal Protruded Microchannel With Multiple Pulsating Jets
,”
Appl. Therm. Eng.
,
210
(
March
), p.
118348
.10.1016/j.applthermaleng.2022.118348
121.
O'Donovan
,
T. S.
, and
Murray
,
D. B.
,
2008
, “
Fluctuating Fluid Flow and Heat Transfer of an Obliquely Impinging Air Jet
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6169
6179
.10.1016/j.ijheatmasstransfer.2008.04.036
122.
Mishra
,
A.
,
Djenidi
,
L.
, and
Agrawal
,
A.
,
2022
, “
Flow Characterization in the Uphill Region of Pulsed Oblique Round Jet
,”
Phys. Fluids
,
34
(
3
), p.
035113
.10.1063/5.0084329
123.
Pakhomov
,
M. A.
, and
Terekhov
,
V. I.
,
2010
, “
Enhancement of an Impingement Heat Transfer Between Turbulent Mist Jet and Flat Surface
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3156
3165
.10.1016/j.ijheatmasstransfer.2010.03.011
124.
Trávníček
,
Z.
, and
Vít
,
T.
,
2015
, “
Impingement Heat/Mass Transfer to Hybrid Synthetic Jets and Other Reversible Pulsating Jets
,”
Int. J. Heat Mass Transfer
,
85
, pp.
473
487
.10.1016/j.ijheatmasstransfer.2015.01.125
125.
Raizner
,
M.
,
Rinsky
,
V.
,
Grossman
,
G.
, and
van Hout
,
R.
,
2019
, “
Heat Transfer and Flow Field Measurements of a Pulsating Round Jet Impinging on a Flat Heated Surface
,”
Int. J. Heat Fluid Flow
,
77
(
May
), pp.
278
287
.10.1016/j.ijheatfluidflow.2019.04.010
126.
Raizner
,
M.
,
Rinsky
,
V.
,
Grossman
,
G.
, and
van Hout
,
R.
,
2019
, “
The Effect of Jet Pulsation on the Flow Field of a Round Impinging Jet and the Radially Expanding Wall Jet
,”
Int. J. Heat Mass Transfer
,
140
, pp.
606
619
.10.1016/j.ijheatmasstransfer.2019.06.024
127.
Raizner
,
M.
, and
van Hout
,
R.
,
2020
, “
Effect of Impinging Jet Pulsation on Primary and Secondary Vortex Characteristics
,”
Int. J. Heat Mass Transfer
,
151
(
11
), p.
119445
.10.1016/j.ijheatmasstransfer.2020.119445
128.
Lyu
,
Y. W.
,
Zhang
,
J. Z.
,
Shan
,
Y.
, and
Tan
,
X. M.
,
2018
, “
The Experimental Investigation of Impinging Heat Transfer of Pulsation Jet on the Flat Plate
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
12
), p. 122202.10.1115/1.4041183
129.
Pakhomov
,
M. A.
, and
Terekhov
,
V. I.
,
2020
, “
RANS Simulation of the Effect of Pulse Form on Fluid Flow and Convective Heat Transfer in an Intermittent Round Jet Impingement
,”
Energies
,
13
(
15
), p.
4025
.10.3390/en13154025
You do not currently have access to this content.