Abstract

The thermal and fluid flow characteristics of a two-dimensional turbulent wall jet have been studied numerically for the partial wavy wall. The partial wall is created by giving a segment of wall a wavy pattern from the leading edge followed by the plane wall; the wavy wall segment varies from 10% to 100% of the wall. The amplitude of wavy surface has also been varied from 0.2a to 0.8a with the interval of 0.2a, where “a” is the nozzle height. The results of the present problem have been compared with the results of a fully plane wall jet. The Reynolds number at the nozzle exit is constant, i.e., 15000 for all the cases to achieve fully turbulent jet. To solve this problem, low Reynolds number RNG model has been used. The results obtained from the present study show that the heat transfer rate remains almost the same for 10% to 100% wavy wall for 0.2a amplitude. In the case of amplitude 0.8a, the heat transfer rate is maximum for 30% wavy wall case; the heat transfer rate reduces further for higher wavy wall %. There is a 26.27% increment in heat transfer for the 30% wavy wall with 0.8a amplitude relative to the fully plane wall jet. The maximum increment in the thermal hydraulic performance (THP) of 5.3% is achieved for 70% wavy wall portion for 0.8a amplitude and it remains the same for further increase in the % of wavy wall. It must be noted here that earlier a 19.08% increase in average heat transfer is achieved for the wavy wall with an amplitude of 0.7 in the previous study. However, in this paper, an increase of 26.27% is noticed with the new design of wavy wall. This study will help in designing a highly efficient cooling or heating system in the engineering application by modifying just only the leading surface of the wall.

References

1.
AbdulNour
,
R.
,
Willenborg
,
K.
,
Grath
,
J. M.
,
Foss
,
J.
, and
AbdulNour
,
B.
,
2000
, “
Measurements of the Convection Heat Transfer Coeficient for a Planar Wall Jet: Uniform Temperature and Uniform Heat Flux Boundary Conditions
,”
Exp. Therm. Fluid Sci.
,
22
(
3–4
), pp.
123
131
.10.1016/S0894-1777(00)00018-2
2.
Yu
,
J.
,
Peng
,
L.
,
Bu
,
X.
,
Shen
,
X.
,
Lin
,
G.
, and
Bai
,
L.
,
2018
, “
Experimental Investigation and Correlation Development of Jet Impingement Heat Transfer With Two Rows of Aligned Jet Holes on an Internal Surface of Awing Leading Edge
,”
Chin. J. Aeronaut.
,
31
(
10
), pp.
1962
1972
.10.1016/j.cja.2018.07.016
3.
Zhang
,
H.
,
Tao
,
W.
,
He
,
Y.
, and
Zhang
,
W.
,
2006
, “
Numerical Study of Liquid Film Cooling in a Rocket Combustion Chamber
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
349
358
.10.1016/j.ijheatmasstransfer.2005.06.017
4.
Yao
,
Y.
,
Zhang
,
J.-Z.
, and
Wang
,
L.-P.
,
2013
, “
Film Cooling on a Gas Turbine Blade Suction Side With Converging Slot-Hole
,”
Int. J. Thermal Sci.
,
65
, pp.
267
279
.10.1016/j.ijthermalsci.2012.10.004
5.
Kumar
,
S.
, and
Kumar
,
A.
,
2021
, “
Effect of Initial Conditions on Mean Flow Characteristics of a Three Dimensional Turbulent Wall Jet
,”
J. Mech. Eng. Sci.
,
235
, pp.
1
14
.10.1177/09544062211014905
6.
Godi
,
S. C.
,
Pattamatta
,
A.
, and
Balaji
,
C.
,
2019
, “
Effect of the Inlet Geometry on the Flow and Heat Transfer Characteristics of Three-Dimensional Wall Jets
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
11
), p.
112201
.10.1115/1.4044509
7.
Sexton
,
A.
,
Punch
,
J.
,
Stafford
,
J.
, and
Jeffers
,
N.
,
2017
, “
Passive Control and Enhancement of Low Reynolds Number Slot Jets Through the Use of Tabs and Chevrons
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
3
), p.
032210
.10.1115/1.4037786
8.
Nizou
,
P. Y.
,
1981
, “
Heat and Momentum Transfer in a Plane Turbulent Wall Jet
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
103
(
1
), pp.
138
140
.10.1115/1.3244407
9.
Mondal
,
T.
,
Guha
,
A.
, and
Das
,
M. K.
,
2015
, “
Analysis of Conjugate Heat Transfer for Combined Wall Jet and Offset Jet
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
138
(
5
), p.
051701
.10.1115/1.4032287
10.
Le
,
M. D.
,
Hsu
,
C. M.
,
Kholili
,
N.
, and
Lu
,
S. H.
,
2018
, “
Effects of Axial Jet-to-Wall Distance on Flow Behavior and Heat Transfer of a Wall Jet at Low Reynolds Number
,”
International Conference on Advanced Manufacturing
,
Yunlin, Taiwan
, Aug. 20–24, pp.
73
76
.
11.
Tang
,
Z.
,
Bergstrom
,
D. J.
, and
Bugg
,
J. D.
,
2017
, “
A Plane Turbulent Wall Jet on a Fully Rough Surface
,”
Int. J. Heat Fluid Flow
,
66
, pp.
258
264
.10.1016/j.ijheatfluidflow.2017.04.014
12.
Afzal
,
N.
, and
Seena
,
A.
,
2013
, “
Parametric Analysis of Turbulent Wall Jet in Still Air Over a Transitional Rough, With Asymptotes of Fully Rough and Fully Smooth Wall Jets
,”
ASME J. Fluids Eng.
,
135
(
11
), p.
111203
.10.1115/1.4025005
13.
Rostamy
,
N.
,
Bergstrom
,
D. J.
,
Sumner
,
D.
, and
Bugg
,
J. D.
,
2011
, “
An Experimental Study of a Turbulent Wall Jet on Smooth and Transitionally Rough Surfaces
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111207
.10.1115/1.4005218
14.
Afzal
,
N.
, and
Seena
,
A.
,
2011
, “
Analysis of a Power Law and Log Law for a Turbulent Wall Jet Over a Transitional Rough Surface: Sniversal Relations
,”
ASME J. Fluids Eng.
,
133
(
9
), p.
091201
.10.1115/1.4004763
15.
Pramanik
,
S.
, and
Das
,
M. K.
,
2014
, “
Numerical Study of Turbulent Wall Jet Over Multiple-Inclined Flat Surface
,”
Comput. Fluids
,
95
, pp.
132
158
.10.1016/j.compfluid.2014.01.020
16.
Hnaien
,
N.
,
Marzouk
,
S.
,
Aissia
,
H. B.
, and
Jay
,
J.
,
2017
, “
Wall Inclination Effect in Heat Transfer Characteristics of a Combined Wall and Offset Jet Flow
,”
Int. J. Heat Fluid Flow
,
64
, pp.
66
78
.10.1016/j.ijheatfluidflow.2017.01.010
17.
Kumar
,
S.
, and
Kumar
,
A.
,
2022
, “
Experimental Study of the Sidewall Effect Onthree-Dimensional Turbulent Wall Jet
,”
ASME J. Fluids Eng.
,
144
(
1
), p.
011202
.10.1115/1.4051578
18.
Kumar
,
S.
, and
Kumar
,
A.
,
2021
, “
Thermal Characteristics of the Three Dimensional Turbulent Wall Jet With and Without Sidewalls
,”
Int. J. Therm. Sci.
,
161
, p.
106725
.10.1016/j.ijthermalsci.2020.106725
19.
Kechiche
,
J.
,
Mhiri
,
H.
,
Palec
,
G. L.
, and
Bournot
,
P.
,
2004
, “
Numerical Study of the Inlet Conditions on a Turbulent Plane Two Dimensional Wall Jet
,”
Energy Convers. Manage.
,
45
(
18–19
), pp.
2931
2949
.10.1016/j.enconman.2003.12.021
20.
Adeniji-Fashola
,
A. A.
, and
Chen
,
C. P.
,
1989
, “
Inlet Turbulence Intensity Level and Cross Stream Distribution Effects on the Heat Transfer in Plane Wall Jets
,”
Int. Common Heat Mass Transfer
,
16
(
6
), pp.
833
842
.10.1016/0735-1933(89)90009-2
21.
Kaffel
,
A.
,
Moureh
,
J.
,
Harion
,
J.
, and
Russeil
,
S.
,
2015
, “
Experimental Investigation of a Plane Wall Jet Subjected to an External Lateral Flow
,”
Exp. Fluids
,
56
(
5
), pp.
1
19
.10.1007/s00348-015-1969-8
22.
Sharma
,
S.
,
Jesudhas
,
V.
,
Balachandar
,
R.
, and
Barron
,
R.
,
2019
, “
Turbulence Structure of a Counter Flowing Wall Jet
,”
Phys. Fluids
,
31
(
2
), p.
025110
.10.1063/1.5082550
23.
Naqavi
,
I. Z.
,
Tucker
,
P. G.
, and
Liu
,
Y.
,
2014
, “
Large-Eddy Simulation of the Interaction of Wall Jets With External Stream
,”
Int. J. Heat Fluid Flow
,
50
, pp.
431
444
.10.1016/j.ijheatfluidflow.2014.10.014
24.
Ayech
,
S. B. H.
,
Said
,
N. M.
,
Bournot
,
P.
, and
Palec
,
G. L.
,
2017
, “
Investigation of a Turbulent Wall Jet in Forced Convection Issuing Into a Directed Coflow Stream
,”
J. Turbul.
, epub, pp.
539
559
.10.1080/14685248.2017.1305497
25.
Singh
,
T. P.
,
Kumar
,
A.
, and
Satapathy
,
A. K.
,
2020
, “
Enhancement of Heat Transfer Using Turbulent Wall Jet
,”
Proc. Inst. Mech,. Part E
,
234
(
1
), pp.
123
136
.10.1177/0954408919891391
26.
Shivankar
,
S.
,
Randive
,
P. R.
, and
Pati
,
S.
,
2020
, “
Effects of Undulated Wall on the Hydrodynamic and Thermal Transport Characteristics of Turbulent Jet
,”
Int. J. Therm. Sci.
,
152
, p.
106297
.10.1016/j.ijthermalsci.2020.106297
27.
Singh
,
T. P.
,
Kumar
,
A.
, and
Satapathy
,
A. K.
,
2020
, “
Heat Transfer and Fluid Flow Characteristics of a Turbulent Dual Jet Impinging on a Wavy Surface
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041017
.10.1115/1.4045882
28.
Kumari
,
]. A.
, and
Kumar
,
A.
,
2021
, “
Heat Transfer and Fluid Flow Characteristics of a Turbulent Wall Jet With a Wavy Wall
,”
Int. J. Heat Fluid Flow
,
87
, p.
108749
.10.1016/j.ijheatfluidflow.2020.108749
29.
Kumari
,
A.
, and
Kumar
,
A.
,
2023
, “
Effect of Frequency of the Wavy Wall on Turbulent Wall Jet Heat Transfer Characteristics
,”
Int. J. Therm. Sci.
,
185
, p.
108013
.10.1016/j.ijthermalsci.2022.108013
30.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence. i. basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.10.1007/BF01061452
31.
ANSYS Fluent,
2020
,
ANSYS Fluent Theory Guide 2020R1
,
ANSYS, Inc
.,
Canonsburg, PA
.
32.
ANSYS Fluent,
2020
,
ANSYS Fluent 2020R1
,
ANSYS Inc
.,
Canonsburg, Pennsylvania
.
33.
Kumar
,
A.
,
2015
, “
Mean Flow and Thermal Characteristics of a Turbulent Dual Jet Consisting of a Plane Wall Jet and a Parallel Offset Jet
,”
Numer. Heat Transfer: Part A
,
67
(
10
), pp.
1075
1096
.10.1080/10407782.2014.955348
34.
Salam
,
T. A.
,
Micklow
,
G.
, and
Williamson
,
K.
,
2008
, “
Numerical Study of Two-Dimensional Turbulent Jets Issued From Inclined Wall
,”
Int. J. Fluid Mech. Res.
,
35
(
1
), pp.
60
75
.10.1615/InterJFluidMechRes.v35.i1.50
35.
Biswas
,
G.
,
2002
, “
The k-Epsilon Model, the Rng k-Epsilon Model and the Phase-Averaged Model
,”
Turbulent Flows: Fundamentals, Experiments and Modeling
,
G.
Biswas
, and
V.
Eswaran
, eds.,
Narosa Publishing House
,
New Delhi, India
, pp.
339
375
.
36.
Kechiche
,
J.
,
Mhiri
,
H.
,
Palec
,
G. L.
, and
Bournot
,
P.
,
2004
, “
Application of Low Reynolds Number Kepsilon, Turbulence Models to the Study of Turbulent Wall Jets
,”
Int. J. Therm. Sci.
,
43
(
2
), pp.
201
211
.10.1016/j.ijthermalsci.2003.06.005
37.
Azim
,
M. A.
,
2013
, “
On the Structure of a Plane Turbulent Wall Jet
,”
ASME J. Fluids Eng.
,
135
(
8
), p.
084502
.10.1115/1.4024114
38.
Eriksson
,
J. G.
,
Karlsson
,
R. I.
, and
Persson
,
J.
,
1998
, “
An Experimental Study of a Two-Dimensional Plane Turbulent Wall Jet
,”
Exp. Fluids
,
25
(
1
), pp.
50
60
.10.1007/s003480050207
39.
Holland
,
J. T.
, and
Liburdy
,
J. A.
,
1990
, “
Measurements of the Thermal Characteristics of a Heated Offset Jets
,”
Int. J. Heat Mass Transfer
,
33
(
1
), pp.
69
78
.10.1016/0017-9310(90)90142-H
40.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis Group
,
New York
.
You do not currently have access to this content.