Abstract

In this paper, entropy generation due to double-diffusive natural convection inside a partly porous enclosure under sinusoidal wall heating is numerically analyzed. The resulting dimensionless coupled partial differential equations are discretized using the finite volume method (FVM), while the pressure–velocity coupling is handled using the SIMPLE algorithm. To ensure the validity of the results obtained from the in-house FORTRAN code, a comparison is made with previous numerical and experimental works. The results of the study indicate that the dimensionless thickness of the porous layer (Δ), the thermal conductivity ratio (Rk), the angle of inclination of the cavity (α), and the buoyancy ratio (N) are critical factors in determining local distribution and global maximum value of entropy generation due to heat transfer and fluid friction. In contrast, their effect on entropy generation induced by concentration is insignificant, except for the buoyancy ratio parameter, where an enhancement of the global maximum of entropy generation is observed by increasing N. Moreover, it is found that Sψ(max) experiences a sharp decline as Δ varies from 0.2 to 0.8, resulting in a reduction of about 67% for the case with N=10 and 83% for the case with N=1. These results highlight the importance of carefully controlling system parameters to minimize energy losses and maximize system efficiency in heat transfer and fluid flow systems.

References

1.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley and Sons
,
New York
.
2.
Torabi
,
M.
,
Karimi
,
N.
,
Peterson
,
G. P.
, and
Yee
,
S.
,
2017
, “
Challenges and Progress on the Modelling of Entropy Generation in Porous Media
,”
Int. J. Heat Mass Transfer
,
114
, pp.
31
46
.10.1016/j.ijheatmasstransfer.2017.06.021
3.
Kaluri
,
R. S.
, and
Basak
,
T.
,
2011
, “
Entropy Generation Due to Natural Convection in Discretely Heated Porous Square Cavities
,”
Energy
,
36
(
8
), pp.
5065
5080
.10.1016/j.energy.2011.06.001
4.
Pratibha
,
B.
,
Avijit
,
N.
, and
Tanmay
,
B.
,
2016
, “
Analysis of Thermal Management During Natural Convection Within Porous Tilted Square Cavities Via Heatline and Entropy Generation
,”
Int. J. Mech. Sci.
,
115–116
, pp.
596
615
.10.1016/j.ijmecsci.2016.07.011
5.
Varol
,
Y.
,
Oztop
,
H. F.
, and
Koca
,
A.
,
2008
, “
Entropy Generation Due to Conjugate Natural Convection in Enclosures Bounded by Vertical Solid Walls With Different Thicknesses
,”
Int. Commun. Heat Mass Transfer
,
35
(
5
), pp.
648
656
.10.1016/j.icheatmasstransfer.2008.01.010
6.
Tanmay
,
B.
,
Praveen
,
G.
, and
Anandalakshmi
,
R.
,
2012
, “
Analysis of Entropy Generation During Natural Convection in Porous Right-Angled Triangular Cavities With Various Thermal Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4521
4535
.10.1016/j.ijheatmasstransfer.2012.03.061
7.
Bouabid
,
M.
,
Ghoudi
,
N.
,
Bouabda
,
R.
, and
Magherbi
,
M.
,
2020
, “
Irreversibility Analysis for Double Diffusive Convection Flow of a Gas Mixture in a Chamfered Corners Square Enclosure Filled With a Porous Medium
,”
Arabian J. Sci. Eng.
,
45
(
9
), pp.
7499
7510
.10.1007/s13369-020-04613-4
8.
Ilis
,
G. G.
,
Mobedi
,
M.
, and
Sunden
,
B.
,
2008
, “
Effect of Aspect Ratio on Entropy Generation in a Rectangular Cavity With Differentially Heated Vertical Walls
,”
Int. Commun. Heat Mass Transfer
,
35
(
6
), pp.
696
703
.10.1016/j.icheatmasstransfer.2008.02.002
9.
Mchirgui
,
A.
,
Hidouri
,
N.
,
Magherbi
,
M.
, and
Ben Brahim
,
A.
,
2014
, “
Second Law Analysis in Double Diffusive Convection Through an Inclined Porous Cavity
,”
Comput. Fluids
,
96
, pp.
105
115
.10.1016/j.compfluid.2014.03.008
10.
Mchirgui
,
A.
,
Hidouri
,
N.
,
Magherbi
,
M.
, and
Ben Brahim
,
A.
,
2012
, “
Entropy Generation in Double-Diffusive Convection in a Square Porous Cavity Using Darcy–Brinkman Formulation
,”
Transp. Porous Med.
,
93
(
1
), pp.
223
240
.10.1007/s11242-012-9954-7
11.
Heidary
,
H.
,
Pirmohammadi
,
M.
, and
Davoudi
,
M.
,
2012
, “
Control of Free Convection and Entropy Generation in Inclined Porous Media
,”
Heat Transfer Eng.
,
33
(
6
), pp.
565
573
.10.1080/01457632.2012.624875
12.
Magherbi
,
M.
,
Abbassi
,
H.
,
Hidouri
,
N.
, and
Brahim
,
A.
,
2006
, “
Second Law Analysis in Convective Heat and Mass Transfer
,”
Entropy
,
8
(
1
), pp.
1
17
.10.3390/e8010001
13.
Rathnam
,
V. M.
,
Biswal
,
P.
, and
Basak
,
T.
,
2016
, “
Analysis of Entropy Generation During Natural Convection Within Entrapped Porous Triangular Cavities During Hot or Cold Fluid Disposal
,”
Numer. Heat Transfer, Part A
,
69
(
9
), pp.
931
956
.10.1080/10407782.2015.1109362
14.
Vijaybabu
,
T. R.
,
2021
, “
Influence of Porous Circular Cylinder on MHD Double-Diffusive Natural Convection and Entropy Generation
,”
Int. J. Mec. Sci.
,
206
, p.
106625
.10.1016/j.ijmecsci.2021.106625
15.
Oueslati
,
F.
, and
Ben-Beya
,
B.
,
2018
, “
Investigation of Heat and Mass Transfer and Irreversibility Phenomena Within a Three-Dimensional Tilted Enclosure for Different Shapes
,”
J. Appl. Mech. Tech. Phys.
,
59
(
1
), pp.
93
103
.10.1134/S0021894418010121
16.
Hussain
,
S. H.
,
2016
, “
Analysis of Heatlines and Entropy Generation During Double-Diffusive MHD Natural Convection Within a Tilted Sinusoidal Corrugated Porous Enclosure
,”
Int. J. Eng. Sci. Tech.
,
19
(
2
), pp.
926
945
.10.1016/j.jestch.2015.12.001
17.
Lukose
,
L.
, and
Basak
,
T.
,
2021
, “
Can the Shape Influence Entropy Generation for Thermal Convection of Identical Fluid Mass With Identical Heating? A Finite Element Introspection
,”
Int. J. Numer. Methods Heat Fluid Flow
,
31
(
6
), pp.
1749
1789
.10.1108/HFF-05-2020-0257
18.
Dutta
,
S.
,
Goswami
,
N.
,
Pati
,
S.
, and
Biswas
,
A. K.
,
2021
, “
Natural Convection Heat Transfer and Entropy Generation in a Porous Rhombic Enclosure: Influence of Non-Uniform Heating
,”
J. Therm. Anal. Calorim.
,
144
(
4
), pp.
1493
1515
.10.1007/s10973-020-09634-7
19.
Hu
,
J. T.
, and
Mei
,
S. J.
,
2021
, “
Combined Thermal and Moisture Convection and Entropy Generation in an Inclined Rectangular Enclosure Partially Saturated With Porous Wall: Nonlinear Effects With Soret and Dufour Numbers
,”
Int. J. Mec. Sci.
,
199
, p.
106412
.10.1016/j.ijmecsci.2021.106412
20.
Chamkha
,
A. J.
,
Miroshnichenko
,
I,. V.
, and
Sheremet
,
M. A.
,
2018
, “
Unsteady Conjugate Natural Convective Heat Transfer and Entropy Generation in a Porous Semicircular Cavity
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
6
), p.
062501
.10.1115/1.4038842
21.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2017
, “
Three-Dimensional Numerical Investigation of Thermodynamic Performance Due to Conjugate Natural Convection From Horizontal Cylinder With Annular Fins
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
8
), p.
082501
.10.1115/1.4035968
22.
Omara
,
A.
,
Touiker
,
M.
, and
Bourouis
,
A.
,
2022
, “
Thermosolutal Natural Convection in a Partly Porous Cavity With Sinusoidal Wall Heating and Cooling
,”
Int. J. Numer. Methods Heat Fluid Flow
,
32
(
3
), pp.
1115
1144
.10.1108/HFF-01-2021-0062
23.
Bera
,
P.
,
Pippal
,
S.
, and
Sharma
,
A. K.
,
2014
, “
A Thermal Non-Equilibrium Approach on Double-Diffusive Natural Convection in a Square Porous-Medium Cavity
,”
Int. J. Heat Mass Transfer
,
78
, pp.
1080
1094
.10.1016/j.ijheatmasstransfer.2014.07.041
24.
Lundgren
,
T. S.
,
1972
, “
Slow Flow Through Stationary Random Beds and Suspensions of Spheres
,”
J. Fluid Mech.
,
51
(
2
), pp.
273
299
.10.1017/S002211207200120X
25.
Neale
,
G.
, and
Nader
,
W.
,
1974
, “
Practical Significance of Brinkman’s Extension of Darcy’s Law: Coupled Parallel Flows Within Channel and a Bounding Porous Medium
,”
Can. J. Chem. Eng.
,
52
(
4
), pp.
475
478
.10.1002/cjce.5450520407
26.
Shohel
,
M.
, and
Roydon
,
A. F.
,
2002
, “
Analysis of Mixed Convection-Radiation Interaction in a Vertical Channel: Entropy Generation
,”
Exergy
,
2
(
4
), pp.
330
339
.10.1016/S1164-0235(02)00075-4
27.
Tasnim
,
H. S.
, and
Shohel
,
M.
,
2002
, “
Entropy Generation in a Vertical Concentric Channel With Temperature Dependent Viscosity
,”
Int. Commu. Heat Mass Transfer
,
29
(
7
), pp.
907
918
.10.1016/S0735-1933(02)00411-6
28.
Beckermann
,
C.
,
Ramadhyani
,
S.
, and
Viskanta
,
R.
,
1987
, “
Natural Convection Flow and Heat Transfer Between a Fluid Layer and a Porous Layer Inside a Rectangular Enclosure
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
109
(
2
), pp.
363
370
.10.1115/1.3248089
You do not currently have access to this content.