Abstract

This study aims at investigating the effect of nanoparticle morphology and concentration on the specific heat capacity of a molten salt used as thermal energy storage material in concentrated solar power plants. Binary carbonate salt eutectic (lithium carbonate and potassium carbonate at a molar ratio of 62:38, respectively) is used as the base material. Two different carbon allotropes, graphite nanoparticles (Gp) and carbon nanotube (CNT) are used as dopants to look into the morphological effect on specific heat (Cp). A series of experiments are carried out to systematically investigate the effect of nanoparticle concentration by varying the mass percentages of carbon allotropes (2 wt.%, 4 wt.%, and 6 wt.%) in the base material. The specific heat capacity of the samples is measured both in solid (250 °C and 400 °C) and liquid phases (520°–560 °C) using a differential scanning calorimeter (DSC). The results show a maximum enhancement of 35% in Cp for 6 wt.% Gp -based salt in the liquid phase. CNT-based nanomaterials exhibit a maximum enhancement of 20% for 4 wt.% CNT inclusion in the liquid phase. The superior performance of Gp compared to CNT and mass concentration-controlled specific heat is explained using field emission scanning electron microscope (FESEM) and energy-dispersive X-ray spectroscopy (EDS) analysis. FESEM and EDS analysis confirm the presence and the composition of the compressed layer, respectively. These layers are considered to be responsible for the anomalous increase in specific heat capacity at different mass concentrations for the carbon allotropes.

References

1.
Tatsidjodoung
,
P.
,
Le Pierrès
,
N.
, and
Luo
,
L.
,
2013
, “
A Review of Potential Materials for Thermal Energy Storage in Building Applications
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
327
349
.10.1016/j.rser.2012.10.025
2.
Agalit
,
H.
,
Zari
,
N.
, and
Maaroufi
,
M.
,
2020
, “
Suitability of Industrial Wastes for Application as High Temperature Thermal Energy Storage (TES) Materials in Solar Tower Power Plants – A Comprehensive Review
,”
Sol. Energy
,
208
, pp.
1151
1165
.10.1016/j.solener.2020.08.055
3.
Agalit
,
H.
,
Zari
,
N.
,
Grosu
,
Y.
,
Faik
,
A.
, and
Maaroufi
,
M.
,
2020
, “
Synthesis of High Temperature TES Materials From Silicates Wastes for Application in Solar Tower Power Plants
,”
Sol. Energy Mater. Sol. Cells
,
218
, p.
110763
.10.1016/j.solmat.2020.110763
4.
Nithiyanantham
,
U.
,
González-Fernández
,
L.
,
Grosu
,
Y.
,
Zaki
,
A.
,
Igartua
,
J. M.
, and
Faik
,
A.
,
2020
, “
Shape Effect of Al2O3 Nanoparticles on the Thermophysical Properties and Viscosity of Molten Salt Nanofluids for TES Application at CSP Plants
,”
Appl. Therm. Eng.
,
169
, p.
114942
.10.1016/j.applthermaleng.2020.114942
5.
Xu
,
B.
,
Li
,
P.
, and
Chan
,
C.
,
2015
, “
Application of Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants: A Review to Recent Developments
,”
Appl. Energy
,
160
, pp.
286
307
.10.1016/j.apenergy.2015.09.016
6.
Kearney
,
D.
,
Kelly
,
B.
,
Herrmann
,
U.
,
Cable
,
R.
,
Pacheco
,
J.
,
Mahoney
,
R.
,
Price
,
H.
,
Blake
,
D.
,
Nava
,
P.
, and
Potrovitza
,
N.
,
2004
, “
Engineering Aspects of a Molten Salt Heat Transfer Fluid in a Trough Solar Field
,”
Energy
,
29
(
5–6
), pp.
861
870
.10.1016/S0360-5442(03)00191-9
7.
Ding
,
W.
,
Shi
,
H.
,
Xiu
,
Y.
,
Bonk
,
A.
,
Weisenburger
,
A.
,
Jianu
,
A.
, and
Bauer
,
T.
,
2018
, “
Hot Corrosion Behavior of Commercial Alloys in Thermal Energy Storage Material of Molten MgCl2/KCl/NaCl Under Inert Atmosphere
,”
Sol. Energy Mater. Sol. Cells
,
184
, pp.
22
30
.10.1016/j.solmat.2018.04.025
8.
Yogi Goswami
,
D.
,
1998
, “
Solar Thermal Power Technology: Present Status and Ideas for the Future
,”
Energy Sources
,
20
(
2
), pp.
137
145
.10.1080/00908319808970052
9.
Kearney
,
D.
,
Herrmann
,
U.
,
Nava
,
P.
,
Kelly
,
B.
,
Mahoney
,
R.
,
Pacheco
,
J.
,
Cable
,
R.
,
Potrovitza
,
N.
,
Blake
,
D.
, and
Price
,
H.
,
2003
, “
Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
170
176
.10.1115/1.1565087
10.
Jo
,
B.
, and
Banerjee
,
D.
,
2015
, “
Thermal Properties Measurement of Binary Carbonate Salt Mixtures for Concentrating Solar Power Plants
,”
J. Renewable Sustainable Energy
,
7
(
3
), p.
033121
.10.1063/1.4922029
11.
Omanovic-Miklicanin
,
E.
,
Badnjević
,
A.
,
Kazlagić
,
A.
, and
Hajlovac
,
M.
,
2020
, “
Nanocomposites: A Brief Review
,”
Health Technol.
,
10
(
1
), pp.
51
59
.10.1007/s12553-019-00380-x
12.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
718
720
.10.1063/1.1341218
13.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
et al.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
), p.
094312
.10.1063/1.3245330
14.
Fan
,
J.
, and
Wang
,
L.
,
2011
, “
Review of Heat Conduction in Nanofluids
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
4
), p.
040801
.10.1115/1.4002633
15.
Shin
,
D.
, and
Banerjee
,
D.
,
2015
, “
Enhanced Thermal Properties of SiO2 Nanocomposite for Solar Thermal Energy Storage Applications
,”
Int. J. Heat Mass Transfer
,
84
, pp.
898
902
.10.1016/j.ijheatmasstransfer.2015.01.100
16.
Madathil
,
P. K.
,
Balagi
,
N.
,
Saha
,
P.
,
Bharali
,
J.
,
Rao
,
P. V. C.
,
Choudary
,
N. V.
, and
Ramesh
,
K.
,
2016
, “
Preparation and Characterization of Molten Salt Based Nanothermic Fluids With Enhanced Thermal Properties for Solar Thermal Applications
,”
Appl. Therm. Eng.
,
109
, pp.
901
905
.10.1016/j.applthermaleng.2016.04.102
17.
Ueki
,
Y.
,
Fujita
,
N.
,
Kawai
,
M.
, and
Shibahara
,
M.
,
2017
, “
Thermal Conductivity of Molten Salt-Based Nanofluid
,”
AIP Adv.
,
7
(
5
), p.
055117
.10.1063/1.4984770
18.
Ma
,
B.
, and
Banerjee
,
D.
,
2017
, “
Experimental Measurements of Thermal Conductivity of Alumina Nanofluid Synthesized in Salt Melt
,”
AIP Adv.
,
7
(
11
), p.
115124
.10.1063/1.5007885
19.
Ueki
,
Y.
,
Fujita
,
N.
,
Kawai
,
M.
, and
Shibahara
,
M.
,
2018
, “
Molten Salt Thermal Conductivity Enhancement by Mixing Nanoparticles
,”
Fusion Eng. Des.
,
136
, pp.
1295
1299
.10.1016/j.fusengdes.2018.04.121
20.
Li
,
Y.
,
Chen
,
X.
,
Wu
,
Y.
,
Lu
,
Y.
,
Zhi
,
R.
,
Wang
,
X.
, and
Ma
,
C.
,
2019
, “
Experimental Study on the Effect of SiO2 Nanoparticle Dispersion on the Thermophysical Properties of Binary Nitrate Molten Salt
,”
Sol. Energy
,
183
, pp.
776
781
.10.1016/j.solener.2019.03.036
21.
Tong
,
Z.
,
Liu
,
M.
, and
Bao
,
H.
,
2016
, “
A Numerical Investigation on the Heat Conduction in High Filler Loading Particulate Composites
,”
Int. J. Heat Mass Transfer
,
100
, pp.
355
361
.10.1016/j.ijheatmasstransfer.2016.04.092
22.
Yang
,
J.
,
Yu
,
W.
,
Liu
,
C.
,
Xie
,
H.
, and
Xu
,
H.
,
2022
, “
Phase Change Mediated Graphene Hydrogel-Based Thermal Interface Material With Low Thermal Contact Resistance for Thermal Management
,”
Compos. Sci. Technol.
,
219
, p.
109223
.10.1016/j.compscitech.2021.109223
23.
Guo
,
Y.
,
Ruan
,
K.
, and
Gu
,
J.
,
2021
, “
Controllable Thermal Conductivity in Composites by Constructing Thermal Conduction Networks
,”
Mater. Today Phys.
,
20
, p.
100449
.10.1016/j.mtphys.2021.100449
24.
Cui
,
T.
,
Li
,
Q.
,
Xuan
,
Y.
, and
Zhang
,
P.
,
2015
, “
Preparation and Thermal Properties of the Graphene–Polyolefin Adhesive Composites: Application in Thermal Interface Materials
,”
Microelectron. Reliab.
,
55
(
12
), pp.
2569
2574
.10.1016/j.microrel.2015.07.036
25.
Wang
,
Z.
,
Tong
,
Z.
,
Ye
,
Q.
,
Hu
,
H.
,
Nie
,
X.
,
Yan
,
C.
,
Shang
,
W.
,
et al.
,
2017
, “
Dynamic Tuning of Optical Absorbers for Accelerated Solar-Thermal Energy Storage
,”
Nat. Commun.
,
8
, p.
1478
.10.1038/s41467-017-01618-w
26.
Tao
,
P.
,
Chang
,
C.
,
Tong
,
Z.
,
Bao
,
H.
,
Song
,
C.
,
Wu
,
J.
,
Shang
,
W.
, and
Deng
,
T.
,
2019
, “
Magnetically-Accelerated Large-Capacity Solar-Thermal Energy Storage Within High-Temperature Phase-Change Materials
,”
Energy Environ. Sci.
,
12
(
5
), pp.
1613
1621
.10.1039/C9EE00542K
27.
Wang
,
B.-X.
,
Zhou
,
L.-P.
, and
Peng
,
X.-F.
,
2006
, “
Surface and Size Effects on the Specific Heat Capacity of Nanoparticles
,”
Int. J. Thermophys.
,
27
(
1
), pp.
139
151
.10.1007/s10765-006-0022-9
28.
Shin
,
D.
, and
Banerjee
,
D.
,
2011
, “
Enhancement of Specific Heat Capacity of High-Temperature Silica-Nanofluids Synthesized in Alkali Chloride Salt Eutectics for Solar Thermal-Energy Storage Applications
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1064
1070
.10.1016/j.ijheatmasstransfer.2010.11.017
29.
Jo
,
B.
, and
Banerjee
,
D.
,
2012
, “
Enhanced Specific Heat Capacity of Molten Salts Using Organic Nanoparticles
,”
ASME
Paper No. IMECE2011-64001.10.1115/IMECE2011-64001
30.
Jo
,
B.
, and
Banerjee
,
D.
,
2015
, “
Enhanced Specific Heat Capacity of Molten Salt-Based Carbon Nanotubes Nanomaterials
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
9
), p.
091013
.10.1115/1.4030226
31.
Tiznobaik
,
H.
, and
Shin
,
D.
,
2013
, “
Enhanced Specific Heat Capacity of High-Temperature Molten Salt-Based Nanofluids
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
542
548
.10.1016/j.ijheatmasstransfer.2012.10.062
32.
Shin
,
D.
, and
Banerjee
,
D.
,
2014
, “
Specific Heat of Nanofluids Synthesized by Dispersing Alumina Nanoparticles in Alkali Salt Eutectic
,”
Int. J. Heat Mass Transfer
,
74
, pp.
210
214
.10.1016/j.ijheatmasstransfer.2014.02.066
33.
Chieruzzi
,
M.
,
Cerritelli
,
G. F.
,
Miliozzi
,
A.
, and
Kenny
,
J. M.
,
2013
, “
Effect of Nanoparticles on Heat Capacity of Nanofluids Based on Molten Salts as PCM for Thermal Energy Storage
,”
Nanoscale Res. Lett.
,
8
, p.
448
.10.1186/1556-276X-8-448
34.
Ho
,
M. X.
, and
Pan
,
C.
,
2014
, “
Optimal Concentration of Alumina Nanoparticles in Molten Hitec Salt to Maximize Its Specific Heat Capacity
,”
Int. J. Heat Mass Transfer
,
70
, pp.
174
184
.10.1016/j.ijheatmasstransfer.2013.10.078
35.
Chieruzzi
,
M.
,
Miliozzi
,
A.
,
Crescenzi
,
T.
,
Torre
,
L.
, and
Kenny
,
J. M.
,
2015
, “
A New Phase Change Material Based on Potassium Nitrate With Silica and Alumina Nanoparticles for Thermal Energy Storage
,”
Nanoscale Res. Lett.
,
10
, p.
273
.10.1186/s11671-015-0984-2
36.
Qiao
,
G.
,
Lasfargues
,
M.
,
Alexiadis
,
A.
, and
Ding
,
Y.
,
2017
, “
Simulation and Experimental Study of the Specific Heat Capacity of Molten Salt Based Nanofluids
,”
Appl. Therm. Eng.
,
111
, pp.
1517
1522
.10.1016/j.applthermaleng.2016.07.159
37.
Kim
,
H. J.
, and
Jo
,
B.
,
2018
, “
Anomalous Increase in Specific Heat of Binary Molten Salt-Based Graphite Nanofluids for Thermal Energy Storage
,”
Appl. Sci.
,
8
(
8
), p.
1305
.10.3390/app8081305
38.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
39.
Yuan
,
F.
,
He
,
Y.-L.
,
Ma
,
Z.
, and
Li
,
M.-J.
,
2019
, “
Study on the Compressed Ion Layer and the Specific Heat of the Phase Change Materials Doping Charged Single-Walled Carbon Nanotubes
,”
Energy Procedia
,
158
, pp.
4909
4914
.10.1016/j.egypro.2019.01.701
40.
Mondragón
,
R.
,
Juliá
,
J. E.
,
Cabedo
,
L.
, and
Navarrete
,
N.
,
2018
, “
On the Relationship Between the Specific Heat Enhancement of Salt-Based Nanofluids and the Ionic Exchange Capacity of Nanoparticles
,”
Sci. Rep.
,
8
, p.
7532
.10.1038/s41598-018-25945-0
41.
Jo
,
B.
, and
Banerjee
,
D.
,
2014
, “
Effect of Dispersion Homogeneity on Specific Heat Capacity Enhancement of Molten Salt Nanomaterials Using Carbon Nanotubes
,”
ASME J. Sol. Energy Eng.
,
137
(
1
), p. 0
11011
.10.1115/1.4028144
42.
Jo
,
B.
, and
Banerjee
,
D.
,
2015
, “
Effect of Solvent on Specific Heat Capacity Enhancement of Binary Molten Salt-Based Carbon Nanotube Nanomaterials for Thermal Energy Storage
,”
Int. J. Therm. Sci.
,
98
, pp.
219
227
.10.1016/j.ijthermalsci.2015.07.020
43.
Hohne
,
G. W. H.
,
Hemminger
,
W. F.
, and
Flammersheim
,
H.-J.
,
2003
,
Differential Scanning Calorimetry
,
Springer
,
Springer
,
Berlin, Germany
.
44.
ASTM
,
2005
,
American Society for Testing and Materials
,
ASTM
,
Philadelphia, PA
, Standard No. ASTM E1269-95.
45.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.ci.nii.ac.jp/naid/10007206317/
46.
Muñoz-Sánchez
,
B.
,
Nieto-Maestre
,
J.
,
Iparraguirre-Torres
,
I.
,
García-Romero
,
A.
, and
Sala-Lizarraga
,
J. M.
,
2018
, “
Molten Salt-Based Nanofluids as Efficient Heat Transfer and Storage Materials at High Temperatures. An Overview of the Literature
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
3924
3945
.10.1016/j.rser.2017.10.080
You do not currently have access to this content.