Abstract

Flow boiling is a common phenomenon in modern technology and industries. A finite difference Front Tracking method is used to study film boiling on a flat plate subject to a constant heat flux. Large density ratios are examined (1000, 2000). The flow structure including the circulation zones, the vortex developing areas, and vortex pair generation are studied in detail. The numerical method is validated by comparing the result with the analytic solution for a simple problem. Large bubbles comparable to the computational domain are formed at large density ratios. The bubble either breaks up and departs from the rest of the gas, or a jet is formed depending on the heat flux imposed. It is found that the Nusselt number depends on the heat flux on the wall. Specifically, the Nusselt number decreases as the heat flux is raised. The Morton number also affects the Nusselt number in agreement with experimental correlations. The Nusselt number increases when the Morton number is raised. The results obtained agree with experimental correlations at relatively low heat fluxes. Agreement gets worse at large heat fluxes. Experimental correlations estimate larger Nusselt numbers compared to the present study. The flow enhances along the direction of the gravitational acceleration at large density ratios (2000). A wide neck is formed that stabilizes at a specific position inside the flow. The microstructure of the flow shows a vortex pair that develops beneath the root of the bubble at a large density ratio (2000).

References

1.
Rayleigh
,
L.
,
1917
, “
On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
Phil. Mag.
,
34
(
200
), pp.
94
98
.10.1080/14786440808635681
2.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2014
, “
Theoretical Model for Local Heat Transfer Coefficient for Annular Flow Boiling in Circular Mini/Micro-Channels
,”
Int. J. Heat Mass Transfer
,
73
, pp.
731
742
.10.1016/j.ijheatmasstransfer.2014.02.055
3.
Harlow
,
F. H.
, and
Welch
,
J. E.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With a Free Surface
,”
Phys. Fluids
,
8
(
12
), pp.
2182
2189
.10.1063/1.1761178
4.
Ryskin
,
G.
, and
Leal
,
L. G.
,
1984
, “
Numerical Solution of Free-Boundary Problems in Fluid Mechanics. Part 2. Buoyancy-Driven Motion of a Gas Bubble Through a Quiescent Liquid
,”
J. Fluid Mech.
,
148
, pp.
19
35
.10.1017/S0022112084002226
5.
Welch
,
S. W. J.
,
1995
, “
Local Simulation of Two-Phase Flows Including Interface Tracking With Mass Transfer
,”
J. Comput. Phys.
,
121
(
1
), pp. 1
42
–1
54
.10.1006/jcph.1995.1185
6.
Lee
,
R. C.
, and
Nydahl
,
J. E.
,
1989
, “
Numerical Calculation of Bubble Growth in Nucleate Boiling From Inception to Departure
,”
ASME J. Heat Transfer-Trans. ASME
,
111
(
2
), pp.
474
479
.10.1115/1.3250701
7.
Son
,
G.
, and
Dhir
,
V. K.
,
1997
, “
Numerical Simulation of Saturated Film Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
119
(
3
), pp.
525
533
.10.1115/1.2824132
8.
Son
,
G.
, and
Dhir
,
V. K.
,
1998
, “
Numerical Simulation of Film Boiling Near Critical Pressures With a Level-Set Method
,”
ASME J. Heat Transfer-Trans. ASME
,
120
(
1
), pp.
183
192
.10.1115/1.2830042
9.
Juric
,
D.
, and
Tryggvason
,
G.
,
1998
, “
Computations of Boiling Flows
,”
Int. J. Multiphase Flow
,
24
(
3
), pp.
387
410
.10.1016/S0301-9322(97)00050-5
10.
Shin
,
S.
, and
Juric
,
D.
,
2002
, “
Modeling Three-Dimensional Multiphase Flow Using a Level Contour Reconstruction Method for Front Tracking Without Connectivity
,”
J. Comput. Phys.
,
180
(
2
), pp.
427
470
.10.1006/jcph.2002.7086
11.
Welch
,
S. W. J.
, and
Wilson
,
J.
,
2000
, “
A Volume of Fluid Based Method for Fluid Flows With Phase Change
,”
J. Comput. Phys.
,
160
(
2
), pp.
662
682
.10.1006/jcph.2000.6481
12.
Esmaeeli
,
A.
, and
Tryggvason
,
G.
,
2004
, “
Computations of Film Boiling. Part I: Numerical Method
,”
Int. J. Heat Mass Transfer
,
47
(
25
), pp.
5451
5461
.10.1016/j.ijheatmasstransfer.2004.07.027
13.
Sato
,
Y.
, and
Niceno
,
B.
,
2017
, “
Nucleate Pool Boiling Simulations Using the Interface Tracking Method: Boiling Regime From Discrete Bubble to Vapor Mushroom Region
,”
Int. J. Heat Mass Transfer
,
105
, pp.
505
524
.10.1016/j.ijheatmasstransfer.2016.10.018
14.
Sun
,
T.
, and
Li
,
W.
,
2013
, “
Three-Dimensional Numerical Simulation of Nucleate Boiling Bubble by Lattice Boltzmann Method
,”
Comput. Fluids
,
88
(
15
), pp.
400
409
.10.1016/j.compfluid.2013.10.009
15.
Li
,
Q.
,
Kang
,
Q. J.
,
Francois
,
M. M.
,
He
,
Y. L.
, and
Luo
,
K. H.
,
2015
, “
Lattice Boltzmann Modeling of Boiling Heat Transfer: The Boiling Curve and the Effects of Wettability
,”
Int. J. Heat Mass Transfer
,
85
, pp.
787
796
.10.1016/j.ijheatmasstransfer.2015.01.136
16.
Gong
,
S.
, and
Cheng
,
P.
,
2015
, “
Lattice Boltzmann Simulations for Surface Wettability Effects in Saturated Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
85
, pp.
635
646
.10.1016/j.ijheatmasstransfer.2015.02.008
17.
Li
,
Q.
,
Zhou
,
P.
, and
Yan
,
H. J.
,
2017
, “
Improved Thermal Lattice Boltzmann Model for Simulation of Liquid-Vapor Phase Change
,”
Phys. Rev. E
,
96
(
6
), p.
063303
.10.1103/PhysRevE.96.063303
18.
Feng
,
Y.
,
Li
,
H.
,
Guo
,
K.
,
Lei
,
X.
, and
Zhao
,
J.
,
2019
, “
Numerical Study on Saturated Pool Boiling Heat Transfer in Presence of a Uniform Electric Field Using Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
135
, pp.
885
896
.10.1016/j.ijheatmasstransfer.2019.01.119
19.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
,
1992
, “
A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows
,”
J. Comput. Phys.
,
100
(
1
), pp.
25
37
.10.1016/0021-9991(92)90307-K
20.
Mortazavi
,
S.
, and
Tryggvason
,
G.
,
2000
, “
A Numerical Study of the Motion of Drops in Poiseuille Flow. Part 1. Lateral Migration of One Drop
,”
J. Fluid Mech.
,
411
, pp.
325
350
.10.1017/S0022112099008204
21.
Sedaghatkish
,
A.
, and
Mortazavi
,
S.
,
2019
, “
Simulation of Film Boiling Heat Transfer in Complex Geometries Using Front Tracking Method
,”
J. Appl. Fluid Mech.
,
12
(
3
), pp.
931
946
.10.29252/jafm.12.03.29214
22.
Peskin
,
C. S.
,
1977
, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys
,
25
(
3
), pp.
220
252
.10.1016/0021-9991(77)90100-0
23.
Adams
,
J.
,
1989
, “
MUDPACK: Multigrid FORTRAN Software for the Efficient Solution of Linear Elliplic Partial Differential Equations
,”
Appl. Math. Comput.
,
34
(
2
), pp.
113
146
.10.1016/0096-3003(89)90010-6
24.
Hamill
,
T. D.
, and
Baumeister
,
K. J.
,
1966
, “
Film Boiling Heat Transfer From a Horizontal Surface as an Optimal Boundary Value Process
,”
Proceedings 3rd International Heat Transfer Conference
, NASA, Lewis Research Center, Cleveland, OH, Aug. 3, pp.
59
64
.https://ntrs.nasa.gov/citations/19670037120
25.
Berenson
,
P. J.
,
1961
, “
Film Boiling Heat Transfer From a Horizontal Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
83
(
3
), pp.
351
358
.10.1115/1.3682280
26.
Chang
,
Y. P.
,
1959
, “
Wave Theory of Heat Transfer in Film Boiling
,”
ASME J. Heat Transfer-Trans. ASME
,
81
(
1
), pp.
1
12
.10.1115/1.4008114
27.
Klimenko
,
V. V.
, and
Shelepen
,
A. G.
,
1982
, “
Film Boiling on a Horizontal Plate – A Supplementary Communication
,”
Int. J. Heat Mass Transfer
,
25
(
10
), pp.
1611
1613
.10.1016/0017-9310(82)90042-4
28.
Gaertner
,
R. F.
,
1965
, “
Photographic Study of Nucleate Pool Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
87
(
1
), pp.
17
27
.10.1115/1.3689038
You do not currently have access to this content.