Abstract

This paper aims at (a) improving the vertical velocity distribution in the wake of a rising isolated bubble for isothermal water layers and (b) evaluating the proposed distribution for thermally stratified therminol layers before and after the initiation of vortex shedding. To address these objectives, numerical investigations are performed, for the rise of an isolated bubble in isothermal and thermally stratified liquid layers, with a combination of the monotonic upwind scheme for conservation laws and pressure implicit with splitting of operators numerical scheme. The analysis revealed that the vertical velocity in the wake of a rising isolated bubble, for isothermal and thermally stratified liquid layers, differs remarkably from the Gaussian distribution. Based on the detailed investigations, region-wise wake velocity distribution comprising a linear superposition of Gaussian approximation with Burr distribution is proposed. Furthermore, this distribution is utilized to predict the rise velocity for a chain of bubbles having different frequencies of departure. Thus, the findings will be useful for the design of heat exchangers or cooling devices, which rely on the heat transfer augmentation with rising air bubbles from a heated surface for isothermal (buoyancy suppressed) and thermally stratified (buoyancy assisted) liquid layers.

References

1.
Ramesh
,
T.
, and
Thyagarajan
,
K.
,
2014
, “
Performance Studies on Sub-Cooling of Cryogenic Liquids Used for Rocket Propulsion Using Helium Bubbling
,”
Int. J. Eng. Technol.
,
6
(
1
), pp.
58
65
.https://www.researchgate.net/publication/287485332_Performance_Studies_on_Subcooling_of_Cryogenic_Liquids_Used_for_Rocket_Propulsion_Using_Helium_Bubbling
2.
Koncar
,
B.
,
Krepper
,
E.
, and
Egorov
,
Y.
,
2005
, “
CFD Modelling of Subcooled Flow Boiling for Nuclear Engineering Applications
,”
Proceedings of the International Conference Nuclear Energy for New Europe
, Bled, Slovenia, Sept. 5–8, Report No.
INSI-SI-06-002
.https://www.researchgate.net/publication/308095080_CFD_modeling_of_subcooled_flow_boiling_for_nuclear_engineering_applications
3.
Kim
,
C. H.
,
Lee
,
M. J.
, and
Park
,
C. Y.
,
2018
, “
An Experimental Study on the Heat Transfer and Pressure Drop Characteristics of Electronics Cooling Heat Sinks With FC-72 Flow Boiling
,”
J. Mech. Sci. Technol.
,
32
(
3
), pp.
1449
1462
.10.1007/s12206-018-0249-y
4.
Donnelly
,
B.
,
Meehan
,
R. R.
,
Nolan
,
K.
, and
Murray
,
D. B.
,
2015
, “
The Dynamics of Sliding Air Bubbles and the Effects on Surface Heat Transfer
,”
Int. J. Heat Mass Transfer
,
91
, pp.
532
542
.10.1016/j.ijheatmasstransfer.2015.07.133
5.
Cao
,
Y.
,
Canals
,
I. M.
, and
Macián-Juan
,
R.
,
2020
, “
Path Instability of a Compressible Air Bubble Rising in Quiescent Water With Consideration of Variable Thermophysical Properties
,”
Int. J. Multiphase Flow
,
129
, p.
103320
.10.1016/j.ijmultiphaseflow.2020.103320
6.
Cao
,
Y.
, and
Macián-Juan
,
R.
,
2021
, “
The Wobbling Motion of Single and Two Inline Bubbles Rising in Quiescent Liquid
,”
Phys. Fluids
,
33
(
7
), p.
073305
.10.1063/5.0055804
7.
Gumulya
,
M.
,
Utikar
,
R. P.
,
Evans
,
G. M.
,
Joshi
,
J. B.
, and
Pareek
,
V.
,
2017
, “
Interaction of Bubbles Rising Inline in Quiescent Liquid
,”
Chem. Eng. Sci.
,
166
, pp.
1
10
.10.1016/j.ces.2017.03.013
8.
Agarwal
,
S. S.
,
Kumar
,
K.
,
Chandra
,
L.
, and
Ghosh
,
P.
,
2021
, “
Assessment of VoF Based Numerical Scheme for Bubble Rise in Isothermal Liquid Layer, and Some New Insight in Thermally Stratified Liquid Layers
,”
Int. J. Heat Mass Transfer
,
169
, p.
120916
.10.1016/j.ijheatmasstransfer.2021.120916
9.
Marks
,
C. H.
,
1973
, “
Measurements of the Terminal Velocity of Bubbles Rising in a Chain
,”
ASME J. Fluids Eng.
,
95
(
1
), pp.
17
22
.10.1115/1.3446951
10.
Wang
,
B.
, and
Socolofsky
,
S. A.
,
2015
, “
On the Bubble Rise Velocity of a Continually Released Bubble Chain in Still Water and With Crossflow
,”
Phys. Fluids
,
27
(
10
), p.
103301
.10.1063/1.4932176
11.
Brücker
,
C.
,
1999
, “
Structure and Dynamics of the Wake of Bubbles and Its Relevance for Bubble Interaction
,”
Phys. Fluids
,
11
(
7
), pp.
1781
1796
.10.1063/1.870043
12.
Kusuno
,
H.
, and
Sanada
,
T.
,
2015
, “
Experimental Investigation of the Motion of a Pair of Bubbles at Intermediate Reynolds Numbers
,”
Multiphase Sci. Technol.
,
27
(
1
), pp.
51
66
.10.1615/MultScienTechn.v27.i1.30
13.
Sanada
,
T.
,
Shirota
,
M.
, and
Watanabe
,
M.
,
2007
, “
Bubble Wake Visualization by Using Photochromic Dye
,”
Chem. Eng. Sci.
,
62
(
24
), pp.
7264
7273
.10.1016/j.ces.2007.08.037
14.
De Vries
,
A.
,
Biesheuvel
,
A.
, and
Van Wijngaarden
,
L.
,
2002
, “
Notes on the Path and Wake of a Gas Bubble Rising in Pure Water
,”
Int. J. Multiphase Flow
,
28
(
11
), pp.
1823
1835
.10.1016/S0301-9322(02)00036-8
15.
Lunde
,
K.
, and
Perkins
,
R. J.
,
1998
, “
Shape Oscillations of Rising Bubbles
,”
Fascination of Fluid Dynamics
, Vol.
45
,
Springer
,
Dordrecht, The Netherlands
, pp.
387
408
.
16.
Celata
,
G. P.
,
D'Annibale
,
F.
,
Di Marco
,
P.
,
Memoli
,
G.
, and
Tomiyama
,
A.
,
2007
, “
Measurements of Rising Velocity of a Small Bubble in a Stagnant Fluid in One- and Two-Component Systems
,”
Exp. Therm. Fluid Sci.
,
31
(
6
), pp.
609
623
.10.1016/j.expthermflusci.2006.06.006
17.
Liang-Shih, F. A. N., and Tsuchiya, K., 1990, “Wake Sizes,” Bubble Wake Dynamics in Liquids and Liquid–Solid Suspensions, Elsevier, Amsterdam, The Netherlands, pp. 143–180.10.1016/b978-0-409-90286-0.50010-0
18.
Nakamura
,
I.
,
1976
, “
Steady Wake Behind a Sphere
,”
Phys. Fluids
,
19
(
1
), pp.
5
8
.10.1063/1.861328
19.
Roshko
,
A.
,
1954
, “
On the Drag and Shedding Frequency of Two-Dimensional Bluff Bodies
,” California Institute of Technology, Washington, DC, Report No.
NACA-TN-3169
.https://digital.library.unt.edu/ark:/67531/metadc57034/
20.
Chakraborty
,
I.
,
Ray
,
B.
,
Biswas
,
G.
,
Durst
,
F.
,
Sharma
,
A.
, and
Ghoshdastidar
,
P. S.
,
2009
, “
Computational Investigation on Bubble Detachment From Submerged Orifice in Quiescent Liquid Under Normal and Reduced Gravity
,”
Phys. Fluids
,
21
(
6
), p.
062103
.10.1063/1.3152437
21.
Ma
,
D.
,
Liu
,
M.
,
Zu
,
Y.
, and
Tang
,
C.
,
2012
, “
Two-Dimensional Volume of Fluid Simulation Studies on Single Bubble Formation and Dynamics in Bubble Columns
,”
Chem. Eng. Sci.
,
72
, pp.
61
77
.10.1016/j.ces.2012.01.013
22.
Chen
,
R. H.
,
Tian
,
W. X.
,
Su
,
G. H.
,
Qiu
,
S. Z.
,
Ishiwatari
,
Y.
, and
Oka
,
Y.
,
2011
, “
Numerical Investigation on Coalescence of Bubble Pairs Rising in a Stagnant Liquid
,”
Chem. Eng. Sci.
,
66
(
21
), pp.
5055
5063
.10.1016/j.ces.2011.06.058
23.
Tripathi
,
M. K.
,
Sahu
,
K. C.
, and
Govindarajan
,
R.
,
2015
, “
Dynamics of an Initially Spherical Bubble Rising in Quiescent Liquid
,”
Nat. Commun.
,
6
(
1
), pp.
6
268
.10.1038/ncomms7268
24.
Bhatt
,
D.
,
Kangude
,
P.
, and
Srivastava
,
A.
,
2019
, “
Simultaneous Mapping of Single Bubble Dynamics and Heat Transfer Rates for SiO2/Water Nanofluids Under Nucleate Pool Boiling Regime
,”
Phys. Fluids
,
31
(
1
), p.
017102
.10.1063/1.5050980
25.
Gumulya
,
M.
,
Joshi
,
J. B.
,
Utikar
,
R. P.
,
Evans
,
G. M.
, and
Pareek
,
V.
,
2016
, “
Bubbles in Viscous Liquids: Time Dependent Behaviour and Wake Characteristics
,”
Chem. Eng. Sci.
,
144
, pp.
298
309
.10.1016/j.ces.2016.01.051
26.
Roig
,
V.
,
Roudet
,
M.
,
Risso
,
F.
, and
Billet
,
A. M.
,
2012
, “
Dynamics of a High-Reynolds-Number Bubble Rising Within a Thin Gap
,”
J. Fluid Mech.
,
707
, pp.
444
466
.10.1017/jfm.2012.289
27.
Trávníček
,
Z.
,
Wang
,
A. B.
, and
Tu
,
W. Y.
,
2014
, “
Laminar Vortex Shedding Behind a Cooled Circular Cylinder
,”
Exp. Fluids
,
55
(
2
), p.
1679
.10.1007/s00348-014-1679-7
28.
Meehan
,
O.
,
Donnelly
,
B.
,
Persoons
,
T.
,
Nolan
,
K.
, and
Murray
,
D. B.
,
2016
, “
Forced Convection in the Wakes of Sliding Bubbles
,”
J. Phys.: Conf. Ser.
,
745
(
3
), p.
032117
.10.1088/1742-6596/745/3/032117
29.
Maeng
,
H.
, and
Park
,
H.
,
2021
, “
An Experimental Study on the Heat Transfer by a Single Bubble Wake Rising Near a Vertical Heated Wall
,”
Int. J. Heat Mass Transfer
,
165
, p.
120590
.10.1016/j.ijheatmasstransfer.2020.120590
You do not currently have access to this content.