Abstract

The accurate computation to predict the heat transfer and flow characteristics in an IRS system is challenging because of the complex designs of thermo-fluid dynamics, such as the entrainment of cold atmospheric air and mixing with the hot exhaust from the gas turbine housed in naval or cargo ships. This study considers the IRS device with four cylindrical funnels stacked one above the other. This study aims to find the suitable turbulence model(s) for numerical modeling of the IRS device. The Reynolds number based on the nozzle diameter is varied between 3527 and 7231 (laboratory-scale) and 4×105 to 5×105 (real-scale) as per the availability of the experimental data. Eight turbulence models, viz., standard kε, RNG kε (with standard wall function and enhanced wall functions), realizable kε, low Reynold number (LRN) Launder-Sharma kε, low Reynold number (LRN) Yang-Shi kε, standard kω, kω SST, v2f are used to model the complex entrainment and mixing process inside the IRS device. The LRN-LS model estimates the thermos-fluid dynamics quite accurately for the lower Reynolds number range (laboratory-scale IRS), and SST kω model predicts accurately for higher Reynolds number values (real-scale IRS). We believe that the present study would help further the numerical modeling of IRS devices.

References

1.
Werle
,
M.
,
Presz
,
W.
, and
Paterson
,
R.
,
1987
, “
Flow Structure in a Periodic Axial Vortex Array
,”
AIAA
Paper No. 87-0610.10.2514/6.1987-610
2.
Wang
,
S. F.
, and
Li
,
L. G.
,
2006
, “
Investigations of Flows in a New Infrared Suppressor
,”
Appl. Therm. Eng.
,
26
(
1
), pp.
36
45
.10.1016/j.applthermaleng.2005.04.011
3.
McCormick
,
D. C.
, and
Bennett
,
J. C.
,
1994
, “
Vortical and Turbulent Structure of a Lobed Mixer Free Shear Layer
,”
AIAA J.
,
32
(
9
), pp.
1852
1859
.10.2514/3.12183
4.
Ponton
,
T.
, and
Wames
,
G.
,
2007
, “
Helicopter IRS Engine Integration for the ‘First’ Technology Demonstrator Programme
,”
Proc. ASME Turbo Expo
,
1
, pp.
67
80
.10.1115/GT2007-27408
5.
Bettini
,
C.
,
Cravero
,
C.
, and
Cogliandro
,
S.
,
2007
, “
Multidisciplinary Analysis of a Complete Infrared Suppression System
,”
ASME
Paper No. GT2007-27721.10.1115/GT2007-27721
6.
Birk
,
A. M.
, and
Davis
,
W. R.
,
1989
, “
Suppressing the Infrared Signatures of Marine Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
111
(
1
), pp.
123
129
.10.1115/1.3240210
7.
Birk
,
A. M.
, and
Vandam
,
D.
,
1992
, “
Infra-Red Signature Suppression for Marine Gas Turbines: Comparison of Sea Trial and Model Test Results for the DRES Ball IRSS System
,”
ASME
Paper No. 92-GT-310.10.1115/92-gt-310
8.
Birk
,
A. M.
, and
VanDam
,
D.
,
1994
, “
Infrared Signature Suppression for Marine Gas Turbines: Comparison of Sea Trial and Model Test Results for the DRES Ball IRSS System
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
75
81
.10.1115/1.2906812
9.
Fangyuan
,
Z.
, and
Yu
,
D.
,
1993
, “
The Effects of Scale Factor on the Aero-Thermodynamic and Infrared Radiation Performance of Naval Gas Turbine Exhaust System With Infrared Signature Suppression Device
,”
ASME
Paper No. 93-GT-232.10.1115/93-GT-232
10.
Im
,
J. H.
, and
Song
,
S. J.
,
2015
, “
Mixing and Entrainment Characteristics in Circular Short Ejectors
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051103
.10.1115/1.4029412
11.
Shaorong
,
Z.
,
Zhaohui
,
D.
,
Hanping
,
C.
, and
Fangyuan
,
Z.
,
2000
, “
Numerical and Experimental Study on the Suppression for the Infrared Signatures of a Marine Gas Turbine Exhaust System
,”
ASME
Paper No. 2000-GT-0322
.10.1115/2000-GT-0322
12.
Sun
,
T.
,
Luan
,
Y.
,
Sun
,
L.
, and
Sun
,
P.
,
2016
, “
Research on Characteristics of a New Marine Gas Turbine Exhaust Ejector Device
,”
ASME
Paper No. GT2016-57214.10.1115/GT2016-57214
13.
Zheng
,
F.
,
Kuznetsov
,
A. V.
,
Roberts
,
W. L.
, and
Paxson
,
D. E.
,
2011
, “
Influence of Geometry on Starting Vortex and Ejector Performance
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051204
.10.1115/1.4004082
14.
Chen
,
Q.
, and
Birk
,
A. M.
,
2005
, “
Experimental Study of an Exhaust Ejector With Entraining Diffuser
,”
ASME
Paper no. GT2005-68654, pp. 167–174.10.1115/GT2005-68654
15.
Chen
,
Q.
, and
Birk
,
A. M.
,
2007
, “
Experimental and CFD Study of an Exhaust Ejector With Round Entraining Diffuser
,”
ASME
Paper No. GT2007-27643, pp. 27–35.10.1115/GT2007-27643
16.
Mahulikar
,
S. P.
,
Potnuru
,
S. K.
, and
Arvind Rao
,
G.
,
2009
, “
Study of Sunshine, Skyshine, and Earthshine for Aircraft Infrared Detection
,”
J. Opt. A Pure Appl. Opt.
,
11
(
4
), pp.
185
192
.10.1088/1464-4258/11/4/045703
17.
Mahulikar
,
S. P.
,
Sane
,
S. K.
,
Gaitonde
,
U. N.
, and
Marathe
,
A. G.
,
2001
, “
Numerical Studies of Infrared Signature Levels of Complete Aircraft
,”
Aeronaut. J.
,
105
(
1046
), pp.
185
192
.10.1017/S0001924000025422
18.
Thompson
,
J.
, and
Vaitekunas
,
D.
,
1998
, “
IR Signature Suppression of Modern Naval Ships
,”
ASNE 21st Century Combat. Technol. Symp., (January)
, Biloxi, MS, Jan. 27–30, pp.
1
9
.https://www.daviseng.com/docs/papers/irss_paper.pdf
19.
Mishra
,
D. P.
, and
Dash
,
S. K.
,
2010
, “
Numerical Investigation of Air Suction Through the Louvers of a Funnel Due to High Velocity Air Jet
,”
Comput. Fluids
,
39
(
9
), pp.
1597
1608
.10.1016/j.compfluid.2010.05.012
20.
Mishra
,
D. P.
, and
Dash
,
S. K.
,
2010
, “
Prediction of Entrance Length and Mass Suction Rate for a Cylindrical Sucking Funnel
,”
Int. J. Numer. Methods Fluids
,
63
(
6
), pp.
681
700
.10.1002/fld.2106
21.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2014
, “
New Correlation for Prediction of Air Entrainment Into an Infrared Suppression (IRS) Device
,”
Appl. Ocean Res.
,
47
, pp.
303
312
.10.1016/j.apor.2014.06.007
22.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2015
, “
Experimental and Numerical Investigation of Air Entrainment Into an Infrared Suppression Device
,”
Appl. Therm. Eng.
,
75
, pp.
33
44
.10.1016/j.applthermaleng.2014.05.042
23.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2015
, “
Entrainment of Air Into an Infrared Suppression (IRS) Device Using Circular and Non-Circular Multiple Nozzles
,”
Comput. Fluids
,
114
, pp.
26
38
.10.1016/j.compfluid.2015.02.016
24.
Barik
,
A. K.
,
Dash
,
S. K.
,
Patro
,
P.
, and
Mohapatra
,
S.
,
2014
, “
Experimental and Numerical Investigation of Air Entrainment Into a Louvred Funnel
,”
Appl. Ocean Res.
,
48
, pp.
176
185
.10.1016/j.apor.2014.08.009
25.
Anavilla
,
M. V. S. N.
,
Kambagowni
,
S. V.
, and
Vepakomma
,
R. B.
,
2019
, “
Design and Validation of Diesel Engine Infrared Signature Suppression Devices for Naval Ships
,”
J. Inst. Eng. Ser. C
,
100
(
5
), pp.
717
727
.10.1007/s40032-019-00525-x
26.
Singh
,
L.
,
Singh
,
S. N.
, and
Sinha
,
S. S.
,
2019
, “
Effect of Slot-Guidance and Slot-Area on Air Entrainment in a Conical Ejector Diffuser for Infrared Suppression
,”
J. Appl. Fluid Mech.
,
12
(
4
), pp.
1301
1317
.10.29252/jafm.12.04.29326
27.
Rathore
,
S. K.
, and
Das
,
M. K.
,
2013
, “
Comparison of Two Low-Reynolds Number Turbulence Models for Fluid Flow Study of Wall Bounded Jets
,”
Int. J. Heat Mass Transfer.
,
61
(
1
), pp.
365
380
.10.1016/j.ijheatmasstransfer.2013.01.062
28.
Rathore
,
S. K.
, and
Das
,
M. K.
,
2015
, “
A Comparative Study of Heat Transfer Characteristics of Wall-Bounded Jets Using Different Turbulence Models
,”
Int. J. Therm. Sci.
,
89
, pp.
337
356
.10.1016/j.ijthermalsci.2014.11.019
29.
Rathore
,
S. K.
, and
Das
,
M. K.
,
2016
, “
Investigation on the Relative Performance of Various Low-Reynolds Number Turbulence Models for Buoyancy-Driven Flow in a Tall Cavity
,”
Heat Mass Transf. Stoffuebertragung
,
52
(
3
), pp.
437
457
.10.1007/s00231-015-1557-8
30.
Dutta
,
R.
,
Dewan
,
A.
, and
Srinivasan
,
B.
,
2013
, “
Comparison of Various Integration to Wall (ITW) RANS Models for Predicting Turbulent Slot Jet Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
65
, pp.
750
764
.10.1016/j.ijheatmasstransfer.2013.06.056
31.
Faheem
,
A.
,
Ranzi
,
G.
,
Fiorito
,
F.
, and
Lei
,
C.
,
2016
, “
A Numerical Study of Turbulent Mixed Convection in a Smooth Horizontal Pipe
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
1
), pp.
1
11
.10.1115/1.4031112
32.
Xie
,
Y.
,
Li
,
P.
,
Lan
,
J.
, and
Zhang
,
D.
,
2013
, “
Flow and Heat Transfer Characteristics of Single Jet Impinging on Dimpled Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
5
), pp.
1
15
.10.1115/1.4023360
33.
Safavi
,
M.
, and
Amani
,
E.
,
2018
, “
A Comparative Study of Turbulence Models for Non-Premixed Swirl-Stabilized Flames
,”
J. Turbul.
,
19
(
11–12
), pp.
1017
1050
.10.1080/14685248.2018.1527033
34.
Achari
,
A. M.
, and
Das
,
M. K.
,
2015
, “
Application of Various RANS Based Models Towards Predicting Turbulent Slot Jet Impingement
,”
Int. J. Therm. Sci.
,
98
, pp.
332
351
.10.1016/j.ijthermalsci.2015.07.018
35.
Mukherjee
,
A.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2021
, “
New Correlations for Flow and Conjugate Heat Transfer With Surface Radiation Characteristics of a Real-Scale Infrared Suppression System With Conical Funnels
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
8
), p.
082101
.10.1115/1.4051129
36.
Basanta Kumar Rana
,
J. R. S.
, “
Entropy Generation Analysis and Cooling Time Estimation for a Rotating Vertical Hollow Tube in the Air Medium
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
4
), p.
042101
.10.1115/1.4049839
37.
Senapati
,
J. R.
, and
Sukanta Kumar Dash
,
S. R.
, “
Three-Dimensional Numerical Investigation of Thermodynamic Performance Due to Conjugate Natural Convection From Horizontal Cylinder With Annular Fins
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
8
), p.
082501
.10.1115/1.4035968
38.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
, 3(2), pp.
269
289
.10.1016/0045-7825(74)90029-2
39.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence. I. Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.10.1007/BF01061452
40.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New K-Epsilon Eddy Viscosity Model for High Reynolds Number Turbulent Flows: Model Development and Validation
,”
Comput. Fluids
, 24, pp.
227
238
.10.1016/0045-7930(94)00032-T
41.
Wolfshtein
,
M.
,
1969
, “
The Velocity and Temperature Distribution in One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transf
er,
12
(
3
), pp.
301
318
.10.1016/0017-9310(69)90012-X
42.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
, 1(2), pp.
131
137
.10.1016/0094-4548(74)90150-7
43.
Yang
,
Z.
, and
Shih
,
T. H.
,
1993
, “
New Time Scale Based K-Epsilon Model for Near-Wall Turbulence
,”
AIAA J.
, 31(7), p.
1191
.10.2514/3.11752
44.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
45.
Lien
,
F. S.
, and
Kalitzin
,
G.
,
2001
, “
Computations of Transonic Flow With the v 2 f Turbulence Model
,”
Int. J. Heat Fluid Flow
,
22
(
1
), pp.
53
61
.10.1016/S0142-727X(00)00073-4
You do not currently have access to this content.