Abstract

The turbulent flow of binary hybrid nano-oils is investigated and Nusselt number correlation is developed for futuristic concentrated solar thermal application. Available Nusselt number correlations for water-based hybrid nanofluids are nanoparticle-specific property correlations dependent and substantially over-predict the values for hybrid nano-oils. Therefore, a generalized Nusselt number correlation for turbulent flow of water and oil-based binary hybrid nanofluids is deduced using the separation approach. Dissimilar to the available correlations, the developed correlation needs only the thermophysical properties of base fluid and nanoparticles. It is valid for the Reynolds number range 10,000–30,000 and the Prandtl number range 0.5–2000. It is found that the proposed correlation predicts the published experimental values for different hybrid nanofluids mostly within ±10–20%. Computational fluid dynamics simulation is also performed for turbulent flow of different hybrid nano-oils to assess the developed correlation. The comparative assessment also confirms that the developed correlation predicts the numerical values for hybrid nano-oils within ±10–20%. The deduced Nusselt number correlation will be useful for a realistic heat transfer analysis with different water or oil-based hybrid nanofluids. The need for experiments with different hybrid nano-oils is realized for further improvement.

References

1.
Kalogirou
,
S.
,
2003
, “
The Potential of Solar Industrial Process Heat Applications
,”
Appl. Energy
,
76
(
4
), pp.
337
361
.10.1016/S0306-2619(02)00176-9
2.
Pranesh
,
V.
,
Velraj
,
R.
,
Christopher
,
S.
, and
Kumaresan
,
V.
,
2019
, “
A 50 Year Review of Basic and Applied Research in Compound Parabolic Concentrating Solar Thermal Collector for Domestic and Industrial Applications
,”
Sol. Energy
,
187
, pp.
293
340
.10.1016/j.solener.2019.04.056
3.
Krishna
,
Y.
,
Faizal
,
M.
,
Saidur
,
R.
,
Ng
,
K. C.
, and
Aslfattahi
,
N.
,
2020
, “
State-of-the-Art Heat Transfer Fluids for Parabolic Trough Collector
,”
Int. J. Heat Mass Transfer
,
152
, p.
119541
.10.1016/j.ijheatmasstransfer.2020.119541
4.
Upadhyay
,
S.
,
Chandra
,
L.
, and
Sarkar
,
J.
,
2021
, “
A Generalized Nusselt Number Correlation for Nanofluids and Look-Up Diagrams to Select a Heat Transfer Fluid for Medium Temperature Solar Thermal Applications
,”
Appl. Therm. Eng.
,
190
, p.
116469
.10.1016/j.applthermaleng.2020.116469
5.
Asadi
,
A.
,
2018
, “
A Guideline Towards Easing the Decision-Making Process in Selecting an Effective Nanofluid as a Heat Transfer Fluid
,”
Energy Convers. Manag.
,
175
, pp.
1
10
.10.1016/j.enconman.2018.08.101
6.
Sandeep
,
H. M.
, and
Arunachala
,
U. C.
,
2017
, “
Solar Parabolic Trough Collectors: A Review on Heat Transfer Augmentation Techniques
,”
Renewable Sustainable Energy Rev.
,
69
, pp.
1218
1231
.10.1016/j.rser.2016.11.242
7.
Bellos
,
E.
,
Said
,
Z.
, and
Tzivanidis
,
C.
,
2018
, “
The Use of Nanofluids in Solar Concentrating Technologies: A Comprehensive Review
,”
J. Clean. Prod.
,
196
, pp.
84
99
.10.1016/j.jclepro.2018.06.048
8.
Tiwari
,
A. K.
,
Kumar
,
V.
,
Said
,
Z.
, and
Paliwal
,
H. K.
,
2021
, “
A Review on the Application of Hybrid Nanofluids for Parabolic Trough Collector: Recent Progress and Outlook
,”
J. Clean. Prod.
,
292
, p.
126031
.10.1016/j.jclepro.2021.126031
9.
Said
,
Z.
,
Amine
,
A.
,
Aberoumand
,
S.
,
Yousef
,
B. A. A.
,
Taha
,
E.
, and
Bellos
,
E.
,
2021
, “
Recent Advances on Nanofluids for Low to Medium Temperature Solar Collectors: Energy, Exergy, Economic Analysis and Environmental Impact
,”
Prog. Energy Comb. Sci.
,
84
, p.
100898
.10.1016/j.pecs.2020.100898
10.
Said
,
Z.
,
Sundar
,
L. S.
,
Kumar
,
A.
,
Ali
,
H. M.
,
Sheikholeslami
,
M.
,
Bellos
,
E.
, and
Babar
,
H.
,
2022
, “
Recent Advances on the Fundamental Physical Phenomena Behind Stability, Dynamic Motion, Thermophysical Properties, Heat Transport, Applications, and Challenges of Nanofluids
,”
Phys. Rep.
,
946
, pp.
1
94
.10.1016/j.physrep.2021.07.002
11.
Mahian
,
O.
,
Bellos
,
E.
,
Markides
,
C. N.
,
Taylor
,
R. A.
,
Alagumalai
,
A.
,
Yang
,
L.
,
Qin
,
C.
,
Lee
,
B. J.
,
Ahmadi
,
G.
,
Safaei
,
M. R.
, and
Wongwises
,
S.
,
2021
, “
Nano Energy Recent Advances in Using Nanofluids in Renewable Energy Systems and the Environmental Implications of Their Uptake
,”
Nano Energy
,
86
, p.
106069
.10.1016/j.nanoen.2021.106069
12.
Ghasemi
,
S. E.
, and
Ranjbar
,
A. A.
,
2016
, “
Thermal Performance Analysis of Solar Parabolic Trough Collector Using Nanofluid as Working Fluid: A CFD Modelling Study
,”
J Mol. Liq.
,
222
, pp.
159
66
.10.1016/j.molliq.2016.06.091
13.
Basbous
,
N.
,
Taqi
,
M.
, and
Janan
,
M. A.
,
2016
, “
Thermal Performances Analysis of a Parabolic Trough Solar Collector Using Different Nanofluids
,”
International Renewable and Sustainable Energy Conference
, Marrakech, Morocco, Nov. 14–17, pp.
322
326
.10.1109/IRSEC.2016.7984006
14.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Thermal Analysis of Parabolic Trough Collector Operating With Mono and Hybrid Nanofluids
,”
Sustainable Energy Technol. Assess.
,
26
, pp.
105
115
.10.1016/j.seta.2017.10.005
15.
Minea
,
A. A.
,
2017
, “
Hybrid Nanofluids Based on Al2O3, TiO2 and SiO2: Numerical Evaluation of Different Approaches
,”
Int. J. Heat Mass Transfer
,
104
, pp.
852
860
.10.1016/j.ijheatmasstransfer.2016.09.012
16.
Al-Oran
,
O.
,
Lezsovits
,
F.
, and
Aljawabrah
,
A.
,
2020
, “
Exergy and Energy Amelioration for Parabolic Trough Collector Using Mono and Hybrid Nanofluids
,”
J. Therm. Anal. Calorim.
,
140
(
3
), pp.
1579
1596
.10.1007/s10973-020-09371-x
17.
Sundar
,
L. S.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2018
, “
Turbulent Heat Transfer and Friction Factor of Nanodiamond-Nickel Hybrid Nanofluids Flow in a Tube: An Experimental Study
,”
Int. J. Heat Mass Transfer
,
117
, pp.
223
234
.10.1016/j.ijheatmasstransfer.2017.09.109
18.
Sundar
,
L. S.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2014
, “
Enhanced Heat Transfer and Friction Factor of MWCNT-Fe3O4/Water Hybrid Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
52
, pp.
73
83
.10.1016/j.icheatmasstransfer.2014.01.012
19.
Yarmand
,
H.
,
Gharehkhani
,
S.
,
Ahmadi
,
G.
,
Shirazi
,
S. F. S.
,
Baradaran
,
S.
,
Montazer
,
E.
,
Zubir
,
M. N.
,
Alehashem
,
M. S.
,
Kazi
,
S. N.
, and
Dahari
,
M.
,
2015
, “
Graphene Nanoplatelets-Silver Hybrid Nanofluids for Enhanced Heat Transfer
,”
Energy Convers. Manage.
,
100
, pp.
419
428
.10.1016/j.enconman.2015.05.023
20.
Suresh
,
S.
,
Venkitaraj
,
K. P.
,
Hameed
,
M. S.
, and
Sarangan
,
J.
,
2014
, “
Turbulent Heat Transfer and Pressure Drop Characteristics of Dilute Water Based Al2O3-Cu Hybrid Nanofluids
,”
J Nanosci Nanotechnol.
,
14
(
3
), pp.
2563
2572
.10.1166/jnn.2014.8467
21.
Madhesh
,
D.
, and
Kalaiselvam
,
S.
,
2015
, “
Experimental Study on Heat Transfer and Rheological Characteristics of Hybrid Nanofluids for Cooling Applications
,”
J. Exp. Nanosci.
,
10
(
15
), pp.
1194
1213
.10.1080/17458080.2014.989551
22.
Klein
,
S. A.
,
2017
,
Engineering Equation Solver Professional Version V10.215
,
F-Chart Software
,
Madison WI
.
23.
Dalkılıc
,
A. S.
,
Turk
,
O. A.
,
Mercan
,
H.
,
Nakkaew
,
S.
, and
Wongwises
,
S.
,
2019
, “
An Experimental Investigation on Heat Transfer Characteristics of graphite-SiO2/Water Hybrid Nanofluid Flow in Horizontal Tube With Various Quad-Channel Twisted Tape Inserts
,”
Int. Commun. Heat Mass Transfer
,
107
, pp.
1
13
.10.1016/j.icheatmasstransfer.2019.05.013
24.
Sundar
,
L. S.
,
Said
,
Z.
,
Saleh
,
B.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2020
, “
Combination of CO3O4 Deposited rGO Hybrid Nanofluids and Longitudinal Strip Inserts: Thermal Properties, Heat Transfer, Friction Factor, and Thermal Performance Evaluations
,”
Therm. Sci. Eng. Prog.
,
20
, p.
100695
.10.1016/j.tsep.2020.100695
25.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2013
,
Principles of Heat and Mass Transfer
,
Wiley
,
Singapore
.
26.
Gulzar
,
O.
,
Qayoum
,
A.
, and
Gupta
,
R.
,
2021
, “
Experimental Study on Thermal Conductivity of Mono and Hybrid Al2O3–TiO2 Nanofluids for Concentrating Solar Collectors
,”
Int. J. Energy Res.
,
45
(
3
), pp.
4370
4384
.10.1002/er.6105
27.
Wei
,
B.
,
Zou
,
C.
,
Yuan
,
X.
, and
Li
,
X.
,
2017
, “
Thermo-Physical Property Evaluation of Diathermic Oil-Based Hybrid Nanofluids for Heat Transfer Applications
,”
Int. J. Heat Mass Transfer
,
107
, pp.
281
287
.10.1016/j.ijheatmasstransfer.2016.11.044
28.
Gulzar
,
O.
,
Qayoum
,
A.
, and
Gupta
,
R.
,
2019
, “
Experimental Study on Stability and Rheological Behaviour of Hybrid Al2O3-TiO2 Therminol-55 Nanofluids for Concentrating Solar Collectors
,”
Powder Technol.
,
352
, pp.
436
444
.10.1016/j.powtec.2019.04.060
29.
Choi
,
E.
, and
Cho
,
Y. I.
,
1995
, “
Local Friction and Heat Transfer Behavior of Water in a Turbulent Pipe Flow With a Large Heat Flux at the Wall
,”
ASME J. Heat Transfer-Trans. ASME
,
117
(
2
), pp.
283
288
.10.1115/1.2822518
30.
Bianco
,
V.
,
Manca
,
O.
, and
Nardini
,
S.
,
2011
, “
Numerical Investigation on Nanofluids Turbulent Convection Heat Transfer Inside a Circular Tube
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
341
349
.10.1016/j.ijthermalsci.2010.03.008
31.
Minea
,
A. A.
,
2015
, “
Simulation of Nanofluids Turbulent Forced Convection at High Reynolds Number: A Comparison Study of Thermophysical Properties Influence on Heat Transfer Enhancement
,”
Flow Turbul. Combust.
,
94
(
3
), pp.
555
575
.10.1007/s10494-014-9590-0
32.
Gorji
,
S.
,
Seddighi
,
M.
,
Ariyaratne
,
C.
,
Vardy
,
A. E.
,
Donoghue
,
T. O.
,
Pokrajac
,
D.
, and
He
,
S.
,
2014
, “
A Comparative Study of Turbulence Models in a Transient Channel Flow
,”
Comput. Fluids
,
89
, pp.
111
123
.10.1016/j.compfluid.2013.10.037
33.
Bayat
,
J.
, and
Nikseresht
,
A. H.
,
2012
, “
Thermal Performance and Pressure Drop Analysis of Nanofluids in Turbulent Forced Convective Flows
,”
Int. J. Therm. Sci.
,
60
, pp.
236
243
.10.1016/j.ijthermalsci.2012.04.012
34.
Saha
,
G.
, and
Paul
,
M. C.
,
2014
, “
Numerical Analysis of the Heat Transfer Behaviour of Water Based Al2O3 and TiO2 Nanofluids in a Circular Pipe Under the Turbulent Flow Condition
,”
Int. Commun. Heat Mass Transfer
,
56
, pp.
96
108
.10.1016/j.icheatmasstransfer.2014.06.008
35.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An-Introduction-To-Computational-Fluid-Dynamics the Finite Volume Method
,
Pearson Education
, London, UK.
36.
ANSYS,
2015
,
ANSYS Fluent Theory Guide 12.0
,
ANSYS
, Canonsburg, PA.
You do not currently have access to this content.