Abstract

The two-temperature model of local thermal nonequilibrium (LTNE) is utilized to investigate a weakly nonlinear stability of thermosolutal convection in an Oldroyd-B fluid-saturated anisotropic porous layer. The anisotropies in permeability, thermal conductivities of the porous medium, and solutal diffusivity are accounted for by second-order tensors with their principal directions coinciding with the horizontal and vertical coordinate axes. A modified Darcy–Oldroyd model is employed to describe the flow in a porous medium bounded by impermeable plane walls with uniform and unequal temperatures as well as solute concentrations. The cubic-Landau equations are derived in the neighborhood of stationary and oscillatory onset using a modified perturbation approach and the stability of bifurcating equilibrium solutions is discussed. The advantage is taken to present some additional results on the linear instability aspects as well. It is manifested that the solutal anisotropy parameter also plays a decisive role on the instability characteristics of the system. It is found that the stationary bifurcating solution transforms from supercritical to subcritical while the oscillatory bifurcating solution transforms from supercritical to subcritical and revert to supercritical. The Nusselt and Sherwood numbers are used to examine the influence of LTNE and viscoelastic parameters on heat and mass transfer, respectively. The results of Maxwell fluid are outlined as a particular case from this study.

References

1.
Govindarajan
,
R.
, and
Sahu
,
K. C.
,
2014
, “
Instabilities in Viscosity-Stratified Flow
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
331
353
.10.1146/annurev-fluid-010313-141351
2.
Sahu
,
K. C.
,
2014
, “
A Review on Double-Diffusive Instability in Viscosity Stratified Flows
,”
Proc. Natl. Acad. Sci.
,
80
(
3
), pp.
513
524
.10.16943/ptinsa/2014/v80i3/55126
3.
Reddy
,
V. K.
,
Janardhanan
,
V. M.
, and
Sahu
,
K. C.
,
2011
, “
Effects of Wall-Heating on the Linear Instability Characteristics of Pressure-Driven Two-Layer Channel Flow
,”
Chem. Eng. Sci.
,
66
(
23
), pp.
6272
6279
.10.1016/j.ces.2011.09.003
4.
Sahu
,
K. C.
,
2020
, “
Linear Instability in Two-Layer Channel Flow Due to Double-Diffusive Phenomenon
,”
Phys. Fluids
,
32
(
2
), p.
024102
.10.1063/1.5139487
5.
Pritchard
,
D.
, and
Richardson
,
C. N.
,
2007
, “
The Effect of Temperature-Dependent Solubility on the Onset of Thermosolutal Convection in a Horizontal Porous Layer
,”
J. Fluid Mech.
,
571
, pp.
59
95
.10.1017/S0022112006003211
6.
Kumar
,
G.
,
Narayana
,
P. A. L.
, and
Sahu
,
K. C.
,
2020
, “
Linear and Nonlinear Thermosolutal Instabilities in an Inclined Porous Layer
,”
Proc. R. Soc. A
,
476
(
2233
), p.
20190705
.10.1098/rspa.2019.0705
7.
Straughan
,
B.
,
2015
,
Convection With Local Thermal Non-Equilibrium and Microfluidic Effects, Advances in Mechanics and Mathematics
, Vol.
32
,
Springer
,
New York
.
8.
Nield
,
D. A.
, and
Bejan
,
A.
,
2017
,
Convection in Porous Media
, 5th ed.,
Springer
,
New York
.
9.
Wang
,
S.
, and
Tan
,
W.
,
2008
, “
Stability Analysis of Double-Diffusive Convection of Maxwell Fluid in a Porous Medium Heated From Below
,”
Phys. Lett. A
,
372
(
17
), pp.
3046
3050
.10.1016/j.physleta.2008.01.024
10.
Malashetty
,
M. S.
,
Swamy
,
M.
, and
Heera
,
R.
,
2009
, “
The Onset of Convection in a Binary Viscoelastic Fluid Saturated Porous Layer
,”
Z. Angew. Math. Mech.
,
89
(
5
), pp.
356
369
.10.1002/zamm.200800199
11.
Malashetty
,
M. S.
,
Tan
,
W.
, and
Swamy
,
M.
,
2009
, “
The Onset of Double Diffusive Convection in a Binary Viscoelastic Fluid Saturated Anisotropic Porous Layer
,”
Phys. Fluids
,
21
(
8
), p.
084101
.10.1063/1.3194288
12.
Awad
,
F. G.
,
Sibanda
,
P.
, and
Motsa
,
S. S.
,
2010
, “
On the Linear Stability Analysis of a Maxwell Fluid With Double-Diffusive Convection
,”
Appl. Math. Model.
,
34
(
11
), pp.
3509
3517
.10.1016/j.apm.2010.02.038
13.
Malashetty
,
M. S.
, and
Biradar
,
B. S.
,
2011
, “
The Onset of Double Diffusive Convection in a Binary Maxwell Fluid Saturated Porous Layer With Cross-Diffusion Effects
,”
Phys. Fluids
,
23
(
6
), p.
064109
.10.1063/1.3601482
14.
Malashetty
,
M. S.
,
Swamy
,
M.
, and
Sidram
,
W.
,
2011
, “
Double Diffusive Convection in a Rotating Anisotropic Porous Layer Saturated With Viscoelastic Fluid
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1757
1769
.10.1016/j.ijthermalsci.2011.04.006
15.
Wang
,
S.
, and
Tan
,
W.
,
2011
, “
Stability Analysis of Soret-Driven Double-Diffusive Convection of Maxwell Fluid in a Porous Medium
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
88
94
.10.1016/j.ijheatfluidflow.2010.10.005
16.
Gaikwad
,
S. N.
, and
Dhanraj
,
M.
,
2013
, “
Onset of Double Diffusive Convection in a Maxwell Fluid Saturated Anisotropic Porous Layer With Internal Heat Source
,”
Spec. Top. Rev. Porous Media
,
4
(
4
), pp.
359
374
.10.1615/SpecialTopicsRevPorousMedia.v4.i4.70
17.
Zhao
,
M.
,
Zhang
,
Q.
, and
Wang
,
S.
,
2014
, “
Linear and Nonlinear Stability Analysis of Double Diffusive Convection in a Maxwell Fluid Saturated Porous Layer With Internal Heat Source
,”
J. Appl. Math.
,
2014
, pp.
1
12
.10.1155/2014/489279
18.
Shivakumara
,
I. S.
,
Raghunatha
,
K. R.
, and
Pallavi
,
G.
,
2020
, “
Intricacies of Coupled Molecular Diffusion on Double Diffusive Viscoelastic Porous Convection
,”
Results Appl. Math.
,
7
, p.
100124
.10.1016/j.rinam.2020.100124
19.
Roy
,
K.
,
Ponalagusamy
,
R.
, and
Murthy
,
P. V. S. N.
,
2020
, “
The Effects of Double-Diffusion and Viscous Dissipation on the Oscillatory Convection in a Viscoelastic Fluid Saturated Porous Layer
,”
Phys. Fluids
,
32
(
9
), p.
094108
.10.1063/5.0020076
20.
Kumar
,
C. H.
,
Shivakumara
,
I. S.
,
Shankar
,
B. M.
, and
Pallavi
,
G.
,
2021
, “
Exploration of Anisotropy on Nonlinear Stability of Thermohaline Viscoelastic Porous Convection
,”
Int. Commun. Heat Mass Transfer
,
126
, p.
105427
.10.1016/j.icheatmasstransfer.2021.105427
21.
Kumar
,
A.
, and
Bhadauria
,
B. S.
,
2011
, “
Double Diffusive Convection in a Porous Layer Saturated With Viscoelastic Fluid Using a Thermal Non-Equilibrium Model
,”
Phys. Fluids
,
23
(
5
), p.
054101
.10.1063/1.3588836
22.
Malashetty
,
M. S.
,
Hill
,
A. A.
, and
Swamy
,
M.
,
2012
, “
Double Diffusive Convection in a Viscoelastic Fluid-Saturated Porous Layer Using a Thermal Non-Equilibrium Model
,”
Acta Mech.
,
223
(
5
), pp.
967
983
.10.1007/s00707-012-0616-1
23.
Yang
,
Z.
,
Wang
,
S.
,
Zhao
,
M.
,
Li
,
S.
, and
Zhang
,
Q.
,
2013
, “
The Onset of Double Diffusive Convection in a Viscoelastic Fluid-Saturated Porous Layer With Non-Equilibrium Model
,”
PLoS One
,
8
(
11
), p.
e79956
.10.1371/journal.pone.0079956
24.
Altawallbeh
,
A. A.
,
Hashim
,
I.
, and
Tawalbeh
,
A. A.
,
2018
, “
Thermal Non-Equilibrium Double Diffusive Convection in a Maxwell Fluid With Internal Heat Source
,”
J. Phys.: Conf. Ser.
,
1132
, p.
012027
.10.1088/1742-6596/1132/1/012027
25.
Tyvand
,
P. A.
,
1980
, “
Thermohaline Instability in Anisotropic Porous Media
,”
Water Resour. Res.
,
16
(
2
), pp.
325
330
.10.1029/WR016i002p00325
26.
Rosenblat
,
S.
,
1986
, “
Thermal Convection in a Viscoelastic Liquid
,”
J. Non-Newton Fluid Mech.
,
21
(
2
), pp.
201
223
.10.1016/0377-0257(86)80036-2
27.
Malashetty
,
M. S.
,
Shivakumara
,
I. S.
, and
Kulkarni
,
S.
,
2005
, “
The Onset of Convection in an Anisotropic Porous Layer Using a Thermal Non-Equilibrium Model
,”
Transp. Porous Media
,
60
(
2
), pp.
199
215
.10.1007/s11242-004-5130-z
28.
Malashetty
,
M. S.
,
Swamy
,
M.
, and
Heera
,
R.
,
2008
, “
Double Diffusive Convection in a Porous Layer Using a Thermal Non-Equilibrium Model
,”
Int. J. Therm. Sci.
,
47
(
9
), pp.
1131
1147
.10.1016/j.ijthermalsci.2007.07.015
29.
Raghunatha
,
K. R.
,
Shivakumara
,
I. S.
, and Sowbhagya.,
2018
, “
Stability of Buoyancy-Driven Convection in an Oldroyd-B Fluid-Saturated Anisotropic Porous Layer
,”
Appl. Math. Mech.
,
39
(
5
), pp.
653
666
.10.1007/s10483-018-2329-6
30.
Kim
,
M. C.
,
Lee
,
S. B.
,
Kim
,
S.
, and
Chung
,
B. J.
,
2003
, “
Thermal Instability of Viscoelastic Fluids in Porous Media
,”
Int. J. Heat Mass Transfer
,
46
(
26
), pp.
5065
5072
.10.1016/S0017-9310(03)00363-6
31.
Shivakumara
,
I. S.
, and
Sumithra
,
R.
,
1999
, “
Non-Darcian Effects on Double Diffusive Convection in a Sparsely Packed Porous Medium
,”
Acta Mech.
,
132
(
1–4
), pp.
113
127
.10.1007/BF01186963
32.
Hirata
,
S. C.
,
Alves
,
L. S. B.
,
Delenda
,
N.
, and
Ouarzazi
,
M. N.
,
2015
, “
Convective and Absolute Instabilities in Rayleigh–Benard–Poiseuille Mixed Convection for Viscoelastic Fluids
,”
J. Fluid Mech.
,
765
, pp.
167
210
.10.1017/jfm.2014.721
You do not currently have access to this content.