Abstract

Since 1933, the vortex tube (VT) has been used as a device for cooling, heating, and creating separation process (particles, hydrocarbons, energy, etc.). The VT efficiency is very relevant to the characteristics of the inside fluid flow patterns. The most important part in the VT that directs the fluid flow is the “navigator,” which has an angle and a rounded edge. In this study, the effects of change in the radius of the rounded edge (R* = 0, 0.5, 1, 1.5, 2, and 2.5 mm) on flow patterns and thermal performance of the VT are studied experimentally. The results show that with a rounded radius variation from 0 to 2 mm, the VT cooling efficiency increases sharply (34.84%) and with a further increase, there will be a decreasing trend for the cooling efficiency (10.48%). Also, this radius affects the location of the effective cold mass fraction (CMFs related to the highest thermal performance). In addition, variations in the gas velocity (axial/swirl at two positions Z/L = 0.3, 0.7) were studied with complete details and compared with other researchers' valid reports. As the results, the maximum axial velocity near the chamber and the maximum swirl velocity drop along the tube are effective on better cooling/heating performance.

References

1.
Ramakrishna
,
P. A.
,
Ramakrishna
,
M.
, and
Manimaran
,
R.
,
2014
, “
Experimental Investigation of Temperature Separation in a Counter-Flow Vortex Tube
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
8
), p.
082801
.10.1115/1.4027248
2.
Kırmacı
,
V.
,
Uluer
,
O.
, and
Dincer
,
K.
,
2010
, “
An Experimental Investigation of Performance and Exergy Analysis of a Counter Flow Vortex Tube Having Various Nozzle Numbers at Different Inlet Pressures of Air, Oxygen, Nitrogen, and Argon
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
12
), p.
121701
.10.1115/1.4002284
3.
Kırmacı
,
V.
, and
Uluer
,
O.
,
2009
, “
An Experimental Investigation of the Cold Mass Fraction, Nozzle Number, and Inlet Pressure Effects on Performance of Counter Flow Vortex Tube
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
8
), p.
081701
.10.1115/1.3111259
4.
Soni
,
Y.
, and
Thomson
,
W. J.
,
1975
, “
Optimal Design of the Ranque-Hilsch Vortex Tube
,”
ASME J. Heat Transfer-Trans. ASME
,
97
(
2
), pp.
316
317
.10.1115/1.3450370
5.
Kirmaci
,
V.
,
2020
, “
Performance Assessment of Parallel Connected Ranque–Hilsch Vortex Tubes Using Nitrogen, Oxygen, and Air With Brass and Polyamide Nozzles: An Experimental Analysis
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
3
), p.
031802
.10.1115/1.4045645
6.
Kaya
,
H.
,
Günver
,
F.
,
Uluer
,
O.
, and
Kırmacı
,
V.
,
2018
, “
Experimental Study About Performance Analysis of Parallel Connected Ranque–Hilsch Counter Flow Vortex Tubes With Different Nozzle Numbers and Materials
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
11
), p.
112801
.10.1115/1.4040707
7.
Takahama
,
H.
, and
Yokosawa
,
H.
,
1981
, “
Energy Separation in Vortex Tubes With a Divergent Chamber
,”
ASME J. Heat Transfer-Trans. ASME
,
103
(
2
), pp.
196
203
.10.1115/1.3244441
8.
Geramian
,
N.
, and
Esmaeeli
,
S. I.
,
2019
, “
Experimental and Three-Dimensional Investigation on Thermal Performance of a Vortex Tube
,”
Prog. Sol. Energy Eng. Syst.
,
3
(
1
), pp.
21
27
.10.18280/psees.030104
9.
Guo
,
X.
,
Zhang
,
B.
, and
Shan
,
Y.
,
2021
, “
LES Study on the Working Mechanism of Large-Scale Precessing Vortices and Energy Separation Process of Ranque-Hilsch Vortex Tube
,”
Int. J. Therm. Sci.
,
163
, p.
106818
.10.1016/j.ijthermalsci.2020.106818
10.
Liang
,
F.
,
Wang
,
H.
, and
Tang
,
G.
,
2021
, “
Temperature Separation Characteristics of CH4–CO2 Binary Gas Mixture Within a Vortex Tube
,”
Int. J. Therm. Sci.
,
161
, p.
106726
.10.1016/j.ijthermalsci.2020.106726
11.
Godbole
,
R.
, and
Ramakrishna
,
P. A.
,
2020
, “
Design Guidelines for the Vortex Tube
,”
Exp. Therm. Fluid Sci.
,
118
, p.
110169
.10.1016/j.expthermflusci.2020.110169
12.
Yan
,
H.
,
Xu
,
Q.
,
Zhao
,
Y.
, and
Xue
,
Y.
,
2020
, “
The Thermal Performance of a Novel Convergent Valveless Vortex Tube
,”
Int. J. Refrig.
,
119
, pp.
92
101
.10.1016/j.ijrefrig.2020.07.007
13.
Alizadeh
,
M.
,
2019
, “
Numerical Investigation on Heat Transfer in a Vortex Tube
,”
Prog. Sol. Energy Eng. Syst.
,
3
(
1
), pp.
28
35
.10.18280/psees.030105
14.
Xue
,
Y.
,
Binns
,
J. R.
,
Arjomandi
,
M.
, and
Yan
,
H.
,
2019
, “
Experimental Investigation of the Flow Characteristics Within a Vortex Tube With Different Configurations
,”
Int. J. Heat Fluid Flow
,
75
, pp.
195
208
.10.1016/j.ijheatfluidflow.2019.01.005
15.
Dziubak
,
T.
,
Bąkała
,
L.
,
Karczewski
,
M.
, and
Tomaszewski
,
M.
,
2020
, “
Numerical Research on Vortex Tube Separator for Special Vehicle Engine Inlet Air Filter
,”
Sep. Purif. Technol.
,
237
, p.
116463
.10.1016/j.seppur.2019.116463
16.
Rafiee
,
S. E.
, and
Sadeghiazad
,
M. M.
,
2017
, “
Efficiency Evaluation of Vortex Tube Cyclone Separator
,”
Appl. Therm. Eng.
,
114
, pp.
300
327
.10.1016/j.applthermaleng.2016.11.110
17.
Rafiee
,
S. E.
, and
Sadeghiazad
,
M. M.
,
2018
, “
Experimental and CFD Analysis on Thermal Performance of Double-Circuit Vortex Tube (DCVT)-Geometrical Optimization, Energy Transfer and Flow Structural Analysis
,”
Appl. Therm. Eng.
,
128
, pp.
1223
1237
.10.1016/j.applthermaleng.2017.09.112
18.
Rafiee
,
S. E.
, and
Sadeghiazad
,
M. M.
,
2017
, “
Improving the Energetical Performance of Vortex Tubes Based on a Comparison Between Parallel, Ranque-Hilsch and Double-Circuit Vortex Tubes Using Both Experimental and CFD Approaches
,”
Appl. Therm. Eng.
,
123
, pp.
1223
1236
.10.1016/j.applthermaleng.2017.05.164
19.
Moffat
,
R. J.
,
1985
, “
Using Uncertainty Analysis in the Planning of an Experiment
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
173
178
.10.1115/1.3242452
20.
Behera
,
U.
,
Paul
,
P. J.
,
Dinesh
,
K.
, and
Jacob
,
S.
,
2008
, “
Numerical Investigations on flow Behavior and Energy Separation in Ranque–Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6077
6089
.10.1016/j.ijheatmasstransfer.2008.03.029
21.
Ahlborn
,
B.
, and
Groves
,
S.
,
1997
, “
Secondary flow in a Vortex Tube
,”
Fluid Dyn. Res.
,
21
(
2
), pp.
73
86
.10.1016/S0169-5983(97)00003-8
22.
Takahama
,
H.
,
1965
, “
Studies on Vortex Tubes
,”
Bull JSME
,
8
(
31
), pp.
433
440
.10.1299/jsme1958.8.433
23.
Reynolds
,
A. J.
,
1962
, “
A Note on Vortex-Tube flows
,”
J. Fluid Mech.
,
14
(
1
), pp.
18
20
.10.1017/S0022112062001032
24.
Reynolds
,
A. J.
,
1960
, “Studies of Rotating fluids: Volume II the Ranque– Hilsch Vortex Tube,” Ph.D. dissertation,
University of London
, London, UK.
25.
Gao
,
C. M.
,
Bosschaart
,
K. J.
,
Zeegers
,
J.
, and
de Waele
,
A.
,
2005
, “
Experimental Study on a Simple Ranque–Hilsch Vortex Tube
,”
Cryogenics
,
45
(
3
), pp.
173
183
.10.1016/j.cryogenics.2004.09.004
You do not currently have access to this content.