Abstract

An alternative weighted-sum-of-gray-gases (WSGG) model is proposed with a single set of constant pressure-based absorption coefficients that accounts for different mole fraction ratios (MRs) of H2O–CO2. The method requires no further interpolation, which in turn brings not only less uncertainty into the model but also simplifies its use. The hitemp2010 spectral database along with the line-by-line (LBL) integration is employed to generate a set of accurate total emissivities from which the WSGG coefficients are fitted. The fitting procedure employs a novel formulation to account for the MR dependence, leading to a more compact set of WSGG correlations when compared to the alternatives available in the literature. The new formulation takes advantage of the weak interdependence of temperature and molar fraction ratio in the weight factors and therefore separates their effects by two independent correlations. As oxy-fired combustion usually occurs in two distinct scenarios, dry- and wet-flue gas recirculation (FGR), the paper also proposes two other sets of coefficients intended to support the MR ranges corresponding to these specific conditions. Comparisons made against the benchmark LBL integration and other WSGG models, for one- and three-dimensional calculations, show the satisfactory level of accuracy of the proposed sets of correlations. In particular, the three-dimensional test case illustrates that the new model is also applicable to conditions observed in air–fuel combustion.

References

1.
Viskanta
,
R.
,
2005
,
Radiative Transfer in Combustion Systems: Fundamentals and Applications
,
Purdue University
, West Lafayette, IN.
2.
Howell
,
J. R.
,
Mengüç
,
M. P.
, and
Siegel
,
R.
,
2016
,
Thermal Radiation Heat Transfer
, 6th ed.,
CRC Press
, Boca Raton, FL.
3.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
,
Academic Press
, New York.
4.
Modest
,
M. F.
, and
Haworth
,
D. C.
,
2016
,
Radiative Heat Transfer in Turbulent Combustion Systems: Theory and Applications
,
Springer
, New York.
5.
Hottel
,
H. C.
, and
Sarofim
,
A. F.
,
1965
,
Radiative Transport
,
McGraw-Hill
,
New York
.
6.
Modest
,
M. F.
,
1991
, “
The Weighted-Sum-of-Gray-Gases Model for Arbitrary Solution Methods in Radiative Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
113
(
3
), pp.
650
656
.10.1115/1.2910614
7.
Hottel
,
H.
, and
Sarofim
,
A.
,
1965
, “
The Effect of Gas Flow Patterns on Radiative Transfer in Cylindrical Furnaces
,”
Int. J. Heat Mass Transfer
,
8
(
8
), pp.
1153
1169
.10.1016/0017-9310(65)90141-9
8.
Taylor
,
P.
, and
Foster
,
P.
,
1974
, “
The Total Emissivities of Luminous and Non-Luminous Flames
,”
Int. J. Heat Mass Transfer
,
17
(
12
), pp.
1591
1605
.10.1016/0017-9310(74)90067-2
9.
Truelove
,
J.
,
1976
, “
A Mixed Grey Gas Model for Flame Radiation
,” United Kingdom Atomic Energy Authority, Harwell, UK, Technical Report No. AERE-R-8494.
10.
Nakra
,
N. K.
, and
Smith
,
T. F.
,
1977
, “
Combined Radiation—Convection for a Real Gas
,”
ASME J. Heat Transfer-Trans. ASME
,
99
(
1
), pp.
60
65
.10.1115/1.3450656
11.
Smith
,
T. F.
,
Shen
,
Z. F.
, and
Friedman
,
J. N.
,
1982
, “
Evaluation of Coefficients for the Weighted Sum of Gray Gases Model
,”
ASME J. Heat Transfer-Trans. ASME
,
104
(
4
), pp.
602
608
.10.1115/1.3245174
12.
Coppalle
,
A.
, and
Vervisch
,
P.
,
1983
, “
The Total Emissivities of High-Temperature Flames
,”
Combust. Flame
,
49
(
1–3
), pp.
101
108
.10.1016/0010-2180(83)90154-2
13.
Dorigon
,
L. J.
,
Duciak
,
G.
,
Brittes
,
R.
,
Cassol
,
F.
,
Galarça
,
M.
, and
França
,
F. H. R.
,
2013
, “
WSGG Correlations Based on HITEMP2010 for Computation of Thermal Radiation in Non-Isothermal, Non-Homogeneous H2O/CO2 Mixtures
,”
Int. J. Heat Mass Transfer
,
64
, pp.
863
873
.10.1016/j.ijheatmasstransfer.2013.05.010
14.
Yin
,
C.
,
2013
, “
Refined Weighted Sum of Gray Gases Model for Air-Fuel Combustion and Its Impacts
,”
Energy Fuels
,
27
(
10
), pp.
6287
6294
.10.1021/ef401503r
15.
Cassol
,
F.
,
Brittes
,
R.
,
França
,
F. H. R.
, and
Ezekoye
,
O. A.
,
2014
, “
Application of the Weighted-Sum-of-Gray-Gases Model for Media Composed of Arbitrary Concentrations of H2O, CO2 and Soot
,”
Int. J. Heat Mass Transfer
,
79
, pp.
796
806
.10.1016/j.ijheatmasstransfer.2014.08.032
16.
Yin
,
C.
,
Johansen
,
L. C. R.
,
Rosendahl
,
L. A.
, and
Kær
,
S. K.
,
2010
, “
New Weighted Sum of Gray Gases Model Applicable to Computational Fluid Dynamics (CFD) Modeling of Oxy-Fuel Combustion: Derivation, Validation, and Implementation
,”
Energy Fuels
,
24
(
12
), pp.
6275
6282
.10.1021/ef101211p
17.
Johansson
,
R.
,
Leckner
,
B.
,
Andersson
,
K.
, and
Johnsson
,
F.
,
2011
, “
Account for Variations in the H2O to CO2 Molar Ratio When Modelling Gaseous Radiative Heat Transfer With the Weighted-Sum-of-Grey-Gases Model
,”
Combust. Flame
,
158
(
5
), pp.
893
901
.10.1016/j.combustflame.2011.02.001
18.
Kangwanpongpan
,
T.
,
França
,
F. H. R.
,
da Silva
,
R. C.
,
Schneider
,
P. S.
, and
Krautz
,
H. J.
,
2012
, “
New Correlations for the Weighted-Sum-of-Gray-Gases Model in Oxy-Fuel Conditions Based on HITEMP 2010 Database
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7419
7433
.10.1016/j.ijheatmasstransfer.2012.07.032
19.
Bordbar
,
M. H.
,
Węcel
,
G.
, and
Hyppänen
,
T.
,
2014
, “
A Line by Line Based Weighted Sum of Gray Gases Model for Inhomogeneous CO2-H2O Mixture in Oxy-Fired Combustion
,”
Combust. Flame
,
161
(
9
), pp.
2435
2445
.10.1016/j.combustflame.2014.03.013
20.
Ge
,
X.
,
Dong
,
J.
,
Fan
,
H.
,
Zhang
,
Z.
,
Shang
,
X.
,
Hu
,
X.
, and
Zhang
,
J.
,
2017
, “
Numerical Investigation of Oxy-Fuel Combustion in 700 °C-Ultra-Supercritical Boiler
,”
Fuel
,
207
, pp.
602
614
.10.1016/j.fuel.2017.06.119
21.
Bordbar
,
H.
,
Fraga
,
G. C.
, and
Hostikka
,
S.
,
2020
, “
An Extended Weighted-Sum-of-Gray-Gases Model to Account for All CO2-H2O Molar Fraction Ratios in Thermal Radiation
,”
Int. Commun. Heat Mass Transfer
,
110
, p.
104400
.10.1016/j.icheatmasstransfer.2019.104400
22.
Guo
,
J.
,
Hu
,
F.
,
Luo
,
W.
,
Li
,
P.
, and
Liu
,
Z.
,
2018
, “
A Full Spectrum k-Distribution Based Non-Gray Radiative Property Model for Fly Ash Particles
,”
Int. J. Heat Mass Transfer
,
118
, pp.
103
115
.10.1016/j.ijheatmasstransfer.2017.10.092
23.
Kez
,
V.
,
Consalvi
,
J.-L.
,
Liu
,
F.
,
Koch
,
M.
,
Hatzfeld
,
O.
, and
Kneer
,
R.
,
2019
, “
Development of a Weighted-Sum-of-Gray-Gases Model for Modeling Radiative Heat Transfer in Coal-Fired Oxy-Fuel Boilers
,” Proceedings of the Ninth International Symposium on Radiative Transfer (
RAD-19
), Athens, Greece, June 3–7, pp.
431
438
.10.1615/RAD-19.530
24.
Coelho
,
F. R.
, and
França
,
F. H. R.
,
2018
, “
WSGG Correlations Based on HITEMP2010 for Gas Mixtures of H2O and CO2 in High Total Pressure Conditions
,”
Int. J. Heat Mass Transfer
,
127
, pp.
105
114
.10.1016/j.ijheatmasstransfer.2018.07.075
25.
Shan
,
S.
,
Zhou
,
Z.
,
Chen
,
L.
,
Wang
,
Z.
, and
Cen
,
K.
,
2017
, “
New Weighted-Sum-of-Gray-Gases Model for Typical Pressurized Oxy-Fuel Conditions
,”
Int. J. Energy Res.
,
41
(
15
), pp.
2576
2595
.10.1002/er.3838
26.
Shan
,
S.
,
Qian
,
B.
,
Zhou
,
Z.
,
Wang
,
Z.
, and
Cen
,
K.
,
2018
, “
New Pressurized WSGG Model and the Effect of Pressure on the Radiation Heat Transfer of H2O/CO2 Gas Mixtures
,”
Int. J. Heat Mass Transfer
,
121
, pp.
999
1010
.10.1016/j.ijheatmasstransfer.2018.01.079
27.
Wang
,
B.
, and
Xuan
,
Y.
,
2019
, “
An Improved WSGG Model for Exhaust Gases of Aero Engines Within Broader Ranges of Temperature and Pressure Variations
,”
Int. J. Heat Mass Transfer
,
136
, pp.
1299
1310
.10.1016/j.ijheatmasstransfer.2019.03.105
28.
Bordbar
,
H.
,
Coelho
,
F. R.
,
Fraga
,
G. C.
,
França
,
F. H. R.
, and
Hostikka
,
S.
,
2021
, “
Pressure-Dependent Weighted-Sum-of-Gray-Gases Models for Heterogeneous CO2-H2O Mixtures at Sub- and Super-Atmospheric Pressure
,”
Int. J. Heat Mass Transfer
,
173
, p.
121207
.10.1016/j.ijheatmasstransfer.2021.121207
29.
Fraga
,
G.
,
Silva
,
F.
,
Zanin
,
L.
,
da Fonseca
,
R.
,
França
,
F.
, and
Centeno
,
F.
,
2021
, “
A Comprehensive Evaluation of the WSGG Model for Air- and Oxy-Fuel Combustion Conditions Through Three-Dimensional Calculations
,”
Fire Saf. J.
,
125
, p.
103433
.10.1016/j.firesaf.2021.103433
30.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1993
, “
A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
4
), pp.
1004
1012
.10.1115/1.2911354
31.
Modest
,
M. F.
, and
Zhang
,
H.
,
2002
, “
The Full-Spectrum Correlated- k Distribution for Thermal Radiation From Molecular Gas-Particulate Mixtures
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
1
), pp.
30
38
.10.1115/1.1418697
32.
Wang
,
C.
,
Modest
,
M. F.
,
Ren
,
T.
,
Cai
,
J.
, and
He
,
B.
,
2021
, “
Comparison and Refinement of the Various Full-Spectrum k-Distribution and Spectral Line Weighted-Sum-of-Gray-Gases Models for Nonhomogeneous Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
271
, p.
107695
.10.1016/j.jqsrt.2021.107695
33.
Solovjov
,
V. P.
,
Webb
,
B. W.
, and
Andre
,
F.
,
2018
, “
Radiative Properties of Gases
,”
Handbook of Thermal Science and Engineering
,
Springer International Publishing
, New York, pp.
1069
1141
.
34.
Wang
,
A.
, and
Modest
,
M. F.
,
2004
, “
Importance of Combined Lorentz-Doppler Broadening in High-Temperature Radiative Heat Transfer Applications
,”
ASME J. Heat Transfer-Trans. ASME
,
126
(
5
), pp.
858
861
.10.1115/1.1798951
35.
Rothman
,
L. S.
,
Gordon
,
I. E.
,
Barber
,
R. J.
,
Dothe
,
H.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Perevalov
,
V. I.
,
Tashkun
,
S. A.
, and
Tennyson
,
J.
,
2010
, “
HITEMP, the High-Temperature Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
15
), pp.
2139
2150
.10.1016/j.jqsrt.2010.05.001
36.
Fraga
,
G. C.
,
Zannoni
,
L.
,
Centeno
,
F. R.
, and
França
,
F. H. R.
,
2019
, “
Evaluation of Different Gray Gas Formulations Against Line-by-Line Calculations in Two- and Three-Dimensional Configurations for Participating Media Composed by CO2, H2O and Soot
,”
Fire Saf. J.
,
108
, p.
102843
.10.1016/j.firesaf.2019.102843
37.
Fraga
,
G. C.
,
Bordbar
,
H.
,
Hostikka
,
S.
, and
França
,
F. H. R.
,
2020
, “
Benchmark Solutions of Three-Dimensional Radiative Transfer in Nongray Media Using Line-by-Line Integration
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
3
), p.
034501
.10.1115/1.4045666
38.
Pearson
,
J. T.
,
Webb
,
B. W.
,
Solovjov
,
V. P.
, and
Ma
,
J.
,
2014
, “
Effect of Total Pressure on the Absorption Line Blackbody Distribution Function and Radiative Transfer in H2O, CO2, and CO
,”
J. Quant. Spectrosc. Radiat. Transfer
,
143
, pp.
100
110
.10.1016/j.jqsrt.2013.08.011
39.
Rivière
,
P.
, and
Soufiani
,
A.
,
2012
, “
Updated Band Model Parameters for H2O, CO2, CH4 and CO Radiation at High Temperature
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3349
3358
.10.1016/j.ijheatmasstransfer.2012.03.019
40.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
,
11
(
2
), pp.
431
441
.10.1137/0111030
41.
McGrattan
,
K.
,
McDermott
,
R.
,
Floyd
,
J.
,
Hostikka
,
S.
,
Forney
,
G.
, and
Baum
,
H.
,
2012
, “
Computational Fluid Dynamics Modelling of Fire
,”
Int. J. Comput. Fluid Dyn.
,
26
(
6–8
), pp.
349
361
.10.1080/10618562.2012.659663
42.
Raithby
,
G. D.
, and
Chui
,
E. H.
,
1990
, “
A Finite Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Transfer-Trans. ASME
,
112
(
2
), pp.
415
423
.10.1115/1.2910394
You do not currently have access to this content.