Abstract

Rectangular-shaped and disk-shaped heat pipes, as innovative heat sinks, are investigated to optimize the thermal performance of three-dimensional integrated circuits (3D ICs) in this work. Finite volume numerical analysis is employed to carry out the simulation of the thermal performance of 3D ICs. Both rectangular-shaped and disk-shaped heat pipes substantially improved the overall thermal performance and reduced the hotspot temperatures by 7 K and 11 K on average, respectively. Furthermore, utilizing the rectangular-shaped or the disk-shaped heat pipe as the heat spreader in place of a solid copper heat spreader further optimizes the thermal performance by reduction of the junction temperatures 14 K and 16 K on average, respectively. These reductions are achieved while the weight of the setup is also significantly reduced. The results indicate that the innovative flat-shaped heat pipes significantly optimize the thermal performance of 3D ICs. The model and results presented in this work aim to pave the way to markedly alleviate the thermal issues of the 3D ICs.

References

1.
Santos
,
C.
,
Vivet
,
P.
,
Colonna
,
J.
, P.
Coudrain
,
P.
, and
Reis
,
R.
,
2014
, “
Thermal Performance of 3D ICs: Analysis and Alternatives
,” International 3D Systems Integration Conference (
3DIC
), Kinsale, Ireland, Dec. 10–13, pp.
1
7
.10.1109/3DIC.2014.7152163
2.
Zhang
,
Y.
,
Dembla
,
A.
,
Joshi
,
Y.
, and
Bakir
,
M. S.
,
2012
, “
3D Stacked Microfluidic Cooling for High-Performance 3D ICs
,”
2012 IEEE 62nd Electronic Components and Technology Conference
, San Diego, CA, May 29–June 1, pp.
1644
1650
.10.1109/ECTC.2012.6249058
3.
Chiang
,
T. Y.
,
Souri
,
S. J.
,
Chui
,
C. O.
, and
Saraswat
,
K. C.
,
2001
, “
Thermal Analysis of Heterogeneous 3D ICs With Various Integration Scenarios
,” International Electron Devices Meeting. Technical Digest (
Cat. No.01CH37224
), Washington, DC, Dec. 2–5, pp.
31.2.1
31.2.4
.10.1109/IEDM.2001.979599
4.
Tavakkoli
,
F.
,
Ebrahimi
,
S.
,
Wang
,
S.
, and
Vafai
,
K.
,
2016
, “
Analysis of Critical Thermal Issues in 3D Integrated Circuits
,”
Int. J. Heat Mass Transfer
,
97
, pp.
337
352
.10.1016/j.ijheatmasstransfer.2016.02.010
5.
Tavakkoli
,
F.
,
Ebrahimi
,
S.
,
Wang
,
S.
, and
Vafai
,
K.
,
2016
, “
Thermophysical and Geometrical Effects on the Thermal Performance and Optimization of a Three-Dimensional Integrated Circuit
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
8
), p.
082101
.10.1115/1.4033138
6.
Wang
,
C.
,
Huang
,
X. J.
, and
Vafai
,
K.
,
2021
, “
Analysis of Hotspots and Cooling Strategy for Multilayer Three-Dimensional Integrated Circuits
,”
Appl. Therm. Eng.
,
186
, p.
116336
.10.1016/j.applthermaleng.2020.116336
7.
Xiao
,
C.
,
He
,
H.
,
Li
,
J.
,
Cao
,
S.
, and
Zhu
,
W.
,
2017
, “
An Effective and Efficient Numerical Method for Thermal Management in 3D Stacked Integrated Circuits
,”
Appl. Therm. Eng.
,
121
, pp.
200
209
.10.1016/j.applthermaleng.2017.04.080
8.
Jain
,
A.
,
Jones
,
R. E.
,
Chatterjee
,
R.
, and
Pozder
,
S.
,
2010
, “
Analytical and Numerical Modeling of the Thermal Performance of Three-Dimensional Integrated Circuits
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
1
), pp.
56
63
.10.1109/TCAPT.2009.2020916
9.
Vafai
,
K.
, and
Wang
,
W.
,
1992
, “
Analysis of Flow and Heat Transfer Characteristics of an Asymmetrical Flat Plate Heat Pipe
,”
Int. J. Heat Mass Transfer
,
35
(
9
), pp.
2087
2099
.10.1016/0017-9310(92)90054-V
10.
Vafal
,
K.
,
Zhu
,
N.
, and
Wang
,
W.
,
1995
, “
Analysis of Asymmetric Disk-Shaped and Flat-Plate Heat Pipes
,”
ASME J. Heat Transfer-Trans. ASME
,
117
(
1
), pp.
209
218
.10.1115/1.2822305
11.
Wang
,
Y.
, and
Vafai
,
K.
,
2000
, “
An Experimental Investigation of the Thermal Performance of an Asymmetrical Flat Plate Heat Pipe
,”
Int. J. Heat Mass Transfer
,
43
(
15
), pp.
2657
2668
.10.1016/S0017-9310(99)00300-2
12.
Zhu
,
N.
, and
Vafai
,
K.
,
1998
, “
Vapor and Liquid Flow in an Asymmetrical Flat Plate Heat Pipe: A Three-Dimensional Analytical and Numerical Investigation
,”
Int. J. Heat Mass Transfer
,
41
(
1
), pp.
159
174
.10.1016/S0017-9310(97)00075-6
13.
Vafai
,
K.
, and
Zhu
,
N.
,
2014
, “
Closure to “Analysis of Asymmetric Disk-Shaped and Flat-Plate Heat Pipes
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
11
), p.
116001
.10.1115/1.4028430
14.
Wan
,
Q.
, and
Galloway
,
J.
,
2011
, “
Accurate Theta JC Measurement for High Power Packages
,”
27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, Mar. 20–24, pp.
208
215
.10.1109/STHERM.2011.5767202
15.
Bar-Cohen
,
A.
,
2009
, “
Thermal Management of on-Chip Hot Spots and 3D Chip Stacks
,”
IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems
, Tel Aviv, Israel, Nov. 9–11, pp.
1
8
.10.1109/COMCAS.2009.5385939
16.
Schmidt
,
R.
,
2003
, “
Challenges in Electronic Cooling: Opportunities for Enhanced Thermal Management Techniques—Microprocessor Liquid Cooled Minichannel Heat Sink
,”
International Conference on Nanochannels, Microchannels, and Minichannels
, Vol.
36673
, Rochester, NY, Apr. 24—25, pp.
951
959
.
17.
Koo
,
J. M.
,
Im
,
S.
,
Jiang
,
L.
, and
Goodson
,
K. E.
,
2005
, “
Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
1
), pp.
49
58
.10.1115/1.1839582
18.
Lau
,
J. H.
, and
Yue
,
T. G.
,
2009
, “
Thermal Management of 3D IC Integration With TSV (Through Silicon Via)
,”
59th Electronic Components and Technology Conference
, San Diego, CA, May 26–29, pp.
635
640
.10.1109/ECTC.2009.5074080
19.
Lau
,
J. H.
,
2012
, “
Recent Advances and New Trends in Nanotechnology and 3D Integration for Semiconductor Industry
,”
ECS Trans.
,
44
(
1
), pp.
805
825
.10.1149/1.3694402
20.
Sridhar
,
A.
,
Vincenzi
,
A.
,
Ruggiero
,
M.
,
Brunschwiler
,
T.
, and
Atienza
,
D.
,
2010
, “
Compact Transient Thermal Model for 3D ICs With Liquid Cooling Via Enhanced Heat Transfer Cavity Geometries
,” 16th International Workshop on Thermal Investigations of ICs and Systems (
THERMINIC
), Barcelona, Spain, Oct. 6–9, pp.
1
6
.https://ieeexplore.ieee.org/document/5636341
21.
Coskun
,
A. K.
,
Ayala
,
J. L.
,
Atienza
,
D.
,
Rosing
,
T. S.
, and
Leblebici
,
Y.
,
2009
, “
Dynamic Thermal Management in 3D Multicore Architectures
,”
Design, Automation & Test in Europe Conference & Exhibition
, Nice, France, Apr. 20–24, pp.
1410
1415
.
22.
Zhou
,
X.
,
Xu
,
Y.
,
Du
,
Y.
,
Zhang
,
Y.
, and
Yang
,
J.
,
2008
, “
Thermal Management for 3D Processors Via Task Scheduling
,”
37th International Conference on Parallel Processing
, Portland, OR, Sept. 9–12, pp.
115
122
.10.1109/ICPP.2008.51
23.
Xing
,
X. Q.
,
Lee
,
Y. J.
,
Tee
,
T. Y.
,
Zhang
,
X.
,
Gao
,
S.
, and
Kwon
,
W. S.
,
2011
, “
Thermal Modeling and Characterization of Package With Through-Silicon-Vias (TSV) Interposer
,”
IEEE 13th Electronics Packaging Technology Conference
, Singapore, Dec. 7–9, pp.
548
553
.10.1109/EPTC.2011.6184481
24.
Wang
,
C.
,
Tang
,
S.
,
Liu
,
X.
,
Su
,
G. H.
,
Tian
,
W.
, and
Qiu
,
S.
,
2020
, “
Experimental Study on Heat Pipe Thermoelectric Generator for Industrial High Temperature Waste Heat Recovery
,”
Appl. Therm. Eng.
,
175
, p.
115299
.10.1016/j.applthermaleng.2020.115299
You do not currently have access to this content.