Abstract

The influence of wall-corrugation-induced swirl flow on enhanced forced convection in wavy-plate-fin cores has been investigated. Three-dimensional computational simulations were carried out for steady-state periodically developed air flow (Pr ∼ 0.71; 50 ≤ Re ≤ 4000) with channel walls subject to constant-uniform temperature conditions. The recirculation that develops in the wall troughs and grows to have an axially helical character is scaled by the Swirl number Sw. As Sw increases with higher flowrate and/or corrugation severity, tornado-shaped vortices appear in the wave trough region midway of the interfin channel height, then extend longitudinally to encompass majority of the flow channel. The local wall-shear and heat transfer coefficient variations indicate that boundary-layer thinning upstream of the wave peak aids in intensifying momentum and heat transfer. However, the flow recirculation in wall trough impedes heat transfer at low Sw due to flow stagnation but promotes it at high Sw because of the vortices-induced augmented fluid mixing. The effects of this secondary flow are quantified by Φf(or j), which is seen to increase log-linearly as fin corrugation aspect ratio γ and/or fin spacing ratio ζ increases; the influence of cross section aspect ratio α is marginal. Moreover, the pressure drag penalty due to swirl critically affects overall pressure loss, and its proportion remains nearly constant when α varies, but grows as Sw, γ, and/or ζ increases and can be as much as 80% of the total pressure drop.

References

1.
ARPA-E
,
FOA - Advanced Research in Dry-Cooling (ARID)
, DE-FOA-0001197, 2014-15,
U. S. Department of Energy
,
Washington, DC
.
2.
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2016
, “
Resolving the Energy-Water Nexus in Large Thermoelectric Power Plants: A Case for Application of Enhanced Heat Transfer and High-Performance Thermal Energy Storage
,”
J. Enhanced Heat Transfer
,
23
(
4
), pp.
263
282
.10.1615/JEnhHeatTransf.2017024681
3.
Manglik
,
R. M.
,
2019
, “
Enhanced Dry-Cooling System and Method for Increasing Power Plant Efficiency and Output
,” U.S. Patent No. 10,227,897.
4.
Bergles
,
A. E.
, and
Manglik
,
R. M.
,
2013
, “
Current Progress and New Developments in Enhanced Heat and Mass Transfer
,”
J. Enhanced Heat Transfer
,
20
(
1
), pp.
1
15
.10.1615/JEnhHeatTransf.2013006989
5.
Manglik
,
R. M.
,
2018
, “
Enhancement of Convective Heat Transfer
,”
Handbook of Thermal Science and Engineering
, vol.1,
Springer
, Cham, Switzerland, pp.
447
477
.
6.
Shi
,
D.
,
Lin
,
K.-T.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2019
, “
Three-Dimensional Computations for Forced Convection of Air in Offset-Strip Fin Channels: Effects of Fin Offset Length
,”
Proc. 2019 ASHRAE Annual Conference
,
Kansas City, MO
, June 22-26, pp.
172
180
.
7.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
8.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
2004
, “
Enhanced Heat and Mass Transfer in the New Millennium: A Review of the 2001 Literature
,”
J. Enhanced Heat Transfer
,
11
(
2
), pp.
87
118
.10.1615/JEnhHeatTransf.v11.i2.10
9.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley, INC
,
Hoboken, NJ
.
10.
Nishimura
,
T.
,
Yano
,
K.
,
Yoshino
,
T.
, and
Kawamura
,
Y.
,
1990
, “
Occurrence and Structure of Taylor-Goertler Vortices Induced in Two-Dimensional Wavy Channels for Steady Flow
,”
J. Chem. Eng. Jpn.
,
23
(
6
), pp.
697
703
.10.1252/jcej.23.697
11.
Vyas
,
S.
,
Zhang
,
J.
, and
Manglik
,
R. M.
,
2004
, “
Steady Recirculation and Laminar Forced Convection in a Sinusoidal Wavy Channel
,”
ASME J Heat Transfer-Trans. ASME
,
126
(
4
), pp.
500
500
.10.1115/1.1811719
12.
Vyas
,
S.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2010
, “
Visualization and Characterization of a Lateral Swirl Flow Structure in Sinusoidal Corrugated-Plate Channels
,”
J. Flow Visualization Image Process.
,
17
(
4
), pp.
281
296
.10.1615/JFlowVisImageProc.v17.i4.10
13.
Zhang
,
J.
,
Kundu
,
J.
, and
Manglik
,
R. M.
,
2004
, “
Effect of Fin Waviness and Spacing on the Lateral Vortex Structure and Laminar Heat Transfer in Wavy-Plate-Fin Cores
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1719
1730
.10.1016/j.ijheatmasstransfer.2003.10.006
14.
Li
,
W.
,
Khan
,
T. A.
,
Tang
,
W.
, and
Minkowycz
,
W. J.
,
2018
, “
Numerical Study and Optimization of Corrugation Height and Angle of Attack of Vortex Generator in the Wavy Fin-and-Tube Heat Exchanger
,”
ASME J Heat Transfer-Trans. ASME
,
140
(
11
), p.
111801
.10.1115/1.4040609
15.
Singh
,
T. P.
,
Kumar
,
A.
, and
Satapathy
,
A. K.
,
2021
, “
Role of a Sinusoidal Wavy Surface in Enhancement of Heat Transfer Using Turbulent Dual Jet
,”
ASME J Heat Transfer-Trans. ASME
,
143
(
4
), p.
032002
.10.1115/1.4049274
16.
Shi
,
D.
,
Lin
,
K.-T.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2021
, “
Characterization and Scaling of Forced Convective Swirl in Sinusoidal Wavy-Plate-Fin Cores of Compact Heat Exchangers
,”
ASME J Heat Transfer-Trans. ASME
,
143
(
2
), p. 021913.10.1115/1.4048921
17.
Focke
,
W. W.
, and
Knibbe
,
P. G.
,
1986
, “
Flow Visualization in Parallel-Plate Ducts With Corrugated Walls
,”
J. Fluid Mech.
,
165
(
1
), pp.
73
77
.10.1017/S0022112086003002
18.
Nishimura
,
T.
,
Kajimoto
,
Y.
, and
Kawamura
,
Y.
,
1986
, “
Mass Transfer Enhancement in Channels With a Wavy Wall
,”
J. Chem. Eng. Jpn.
,
19
(
2
), pp.
142
144
.10.1252/jcej.19.142
19.
Gschwind
,
P.
,
Regele
,
A.
, and
Kottke
,
V.
,
1995
, “
Sinusoidal Wavy Channels With Taylor-Goertler Vortices
,”
Exp. Therm. Fluid Sci.
,
11
(
3
), pp.
270
275
.10.1016/0894-1777(95)00056-R
20.
Rush
,
T. A.
,
Newell
,
T. A.
, and
Jacobi
,
A. M.
,
1999
, “
An Experimental Study of Flow and Heat Transfer in Sinusoidal Wavy Passages
,”
Int. J. Heat Mass Transfer
,
42
(
9
), pp.
1541
1553
.10.1016/S0017-9310(98)00264-6
21.
Metwally
,
H. M.
, and
Manglik
,
R. M.
,
2004
, “
Enhanced Heat Transfer Due to Curvature-Induced Lateral Vortices in Laminar Flows in Sinusoidal Corrugated-Plate Channels
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2283
2292
.10.1016/j.ijheatmasstransfer.2003.11.019
22.
Shi
,
D.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
, “
Correlating Swirl Behavior in Low Reynolds Number Flows in Wavy-Fin Heat Exchanger
,”
Proc. ASHRAE Winter Conference and AHR Expo
,
ASHRAE
,
Las Vegas, NV,
Jan. 28-Feb. 1, Paper No. LV-17-C082.
23.
Motamed Ektesabi
,
M. R.
,
Sako
,
M.
, and
Chiba
,
T.
,
1987
, “
Fluid Flow and Heat Transfer in Wavy Sinusoidal Channels (1st Report, Numerical Analysis of Two Dimensional Laminar Flow Field)
,”
Nippon Kikai Gakkai Ronbunshu, Trans. JSME
,
53
(
487
), pp.
722
730
.10.1299/kikaib.53.722
24.
Shi
,
D.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2018
, “
Computational Modeling of Low Reynolds Number Air Flows in Wavy-Plate-Fin Channel: Contribution of Pressure Drag on Performance
,”
Proc. International Heat Transfer Conference
, Beijing, China, Begell House, New York, Aug. 10-15, pp.
5123
5130
.
25.
Vajravelu
,
K.
,
1980
, “
Fluid Flow and Heat Transfer in Horizontal Wavy Channels
,”
Acta Mech.
,
35–35
(
3–4
), pp.
245
258
.10.1007/BF01190400
26.
Manglik
,
R. M.
,
Zhang
,
J.
, and
Muley
,
A.
,
2005
, “
Low Reynolds Number Forced Convection in Three-Dimensional Wavy-Plate-Fin Compact Channels: Fin Density Effects
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1439
1449
.10.1016/j.ijheatmasstransfer.2004.10.022
27.
Yang
,
L. C.
,
Asako
,
Y.
,
Yamaguchi
,
Y.
, and
Faghri
,
M.
,
1997
, “
Numerical Prediction of Transitional Characteristics of Flow and Heat Transfer in a Corrugated Channel
,”
ASME J. Heat Transfer-Trans. ASME
,
119
(
1
), pp.
62
69
.10.1115/1.2824101
28.
Pham
,
M. V.
,
Plourde
,
F.
, and
Doan
,
S. K.
,
2008
, “
Turbulent Heat and Mass Transfer in Sinusoidal Wavy Channels
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1240
1257
.10.1016/j.ijheatfluidflow.2008.04.002
29.
Harikrishnan
,
S.
, and
Tiwari
,
S.
,
2020
, “
Unsteady Flow and Heat Transfer Characteristics of Primary and Secondary Corrugated Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
3
), p.
031803
.10.1115/1.4045751
30.
Bishara
,
F.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2009
, “
Computational Simulation of Swirl Enhanced Flow and Heat Transfer in a Twisted Oval Tube
,”
ASME J Heat Transfer-Trans. ASME
,
131
(
8
), p.
080902
.10.1115/1.3143015
31.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
2013
, “
Characterization of Twisted-Tape-Induced Helical Swirl Flows for Enhancement of Forced Convective Heat Transfer in Single-Phase and Two-Phase Flows
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021010
.10.1115/1.4023935
32.
Kreith
,
F.
, and
Manglik
,
R. M.
,
2018
,
Principles of Heat Transfer
,
Cengage Learning
,
Boston, MA
.
33.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
,
1977
, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,”
ASME J Heat Transfer-Trans. ASME
,
99
(
2
), pp.
180
186
.10.1115/1.3450666
34.
Bishara
,
F.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2013
, “
Heat Transfer Enhancement Due to Swirl Effects in Oval Tubes Twisted About Their Longitudinal Axis
,”
J. Enhanced Heat Transfer
,
20
(
4
), pp.
289
304
.10.1615/JEnhHeatTransf.2014010532
35.
Patel
,
P.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2012
, “
Swirl-Enhanced Laminar Forced Convection Through Axially Twisted Rectangular Ducts – Part 1, Fluid Flow
,”
J. Enhanced Heat Transfer
,
19
(
5
), pp.
423
436
.10.1615/JEnhHeatTransf.v19.i5.30
36.
Manglik
,
R. M.
,
Patel
,
P.
, and
Jog
,
M. A.
,
2012
, “
Swirl-Enhanced Laminar Forced Convection Through Axially Twisted Rectangular Ducts – Part 2, Heat Transfer
,”
J. Enhanced Heat Transfer
,
19
(
5
), pp.
437
450
.10.1615/JEnhHeatTransf.2012005641
37.
Manglik
,
R. M.
,
Huzayyin
,
O. A.
, and
Jog
,
M. A.
,
2011
, “
Fin Effects in Flow Channels of Plate-Fin Compact Heat Exchanger Cores
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
4
), p.
041004
.10.1115/1.4004844
38.
Boussinesq
,
J.
,
1877
, “
Essai Sur la Théorie Des Eaux Courantes
,”
Mémoires Présentés Par Divers Savants à L'Academie Des Sci.
,
23
(
1
), pp.
1
680
.http://catalogue.bnf.fr/ark:/12148/cb301489808
39.
ANSYS Fluent, 17.2,
2016
,
Theory Guide 17.0
, ANSYS, Inc.,
Canonsburg, PA
.
40.
Manglik
,
R. M.
,
2003
, “
Heat Transfer Enhancement
,”
Heat Transfer Handbook
,
A.
Bejan
, and
A. D.
Kraus
, eds.,
Wiley
,
Hoboken, NJ
.
41.
Marner
,
W. J.
,
Bergles
,
A. E.
, and
Chenoweth
,
J. M.
,
1983
, “
On the Presentation of Performance Data for Enhanced Tubes Used in Shell-and-Tube Heat Exchangers
,”
ASME J. Heat Transfer-Trans ASME
,
105
(
2
), pp.
358
365
.10.1115/1.3245586
42.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
2002
, “
Swirl Flow Heat Transfer and Pressure Drop With Twisted-Tape Inserts
,”
Adv. Heat Transfer
,
36
, pp.
183
266
.https://www.elsevier.com/books/advances-in-heat-transfer/hartnett/978-0-12-020036-8
43.
Lin
,
K.-T.
,
Shi
,
D.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2020
, “
General Correlations for Laminar Flow Friction Loss and Heat Transfer in Plain Rectangular Plate-Fin Cores
,”
ASME J Heat Transfer-Trans. ASME
,
142
(
12
), p.
121801
.10.1115/1.4048091
44.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic Press
,
New York
.
45.
Beavers
,
G. S.
,
Sparrow
,
E. M.
, and
Lloyd
,
J. R.
,
1971
, “
Low Reynolds Number Turbulent Flow in Large Aspect Ratio Rectangular Ducts
,”
J. Fluid Eng.
,
93
(
2
), pp.
296
299
.10.1115/1.3425230
You do not currently have access to this content.