Abstract

A convection system can be designed as an energy-efficient one by making a considerable reduction in exergy losses. In this context, entropy generation analysis is performed on the infrared suppression system numerically. In addition, results due to heat transfer are also shown. The numerical solution of the Navier–stokes equation, energy equation, and turbulence equation is executed using ansysfluent 15.0. To perform the numerical analysis, different parameters such as the number of funnels, Rayleigh number (Ra), inner surface temperature, and geometric ratio are varied in the practical range. Results are shown in terms of heat transfer, entropy generation, irreversibility (due to heat transfer and fluid friction), and Bejan number with some relevant parameters. Streamlines and temperature contours are also provided for better visualization of temperature and flow field around the device. Results show that heat transfer and mass flow rate increase with the increase in the number of funnels. Entropy generation and the irreversibility rise with an increase in the number of funnels and geometric ratio. Also, the Bejan number decreases with an increase in Ra and the number of funnels. A cooling time is also obtained using the lumped capacitance method.

References

1.
Birk
,
A. M.
,
Davis
,
W. R.
, and
Limited
,
W. R. D. E.
,
1989
, “
Suppressing the Infrared Signatures of Marine Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
111
(
1
), pp.
123
129
.10.1115/1.3240210
2.
Birk
,
A. M.
, and
VanDam
,
D.
,
1994
, “
Infrared Signature Suppression for Marine Gas Turbines: Comparison of Sea Trial and Model Test Results for the DRES Ball IRSS System
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
75
81
.10.1115/1.2906812
3.
Thompson
,
J.
, and
Vaitekunas
,
D.
,
1998
, “
IR Signature Suppression of Modern Naval Ships 1
,”
ASNE 21st Century Combat Technology Symposium
, pp.
1
9
.
4.
Mishra
,
D. P.
, and
Dash
,
S. K.
,
2010
, “
Numerical Investigation of Air Suction Through the Louvers of a Funnel Due to High Velocity Air Jet
,”
Comput. Fluids
,
39
(
9
), pp.
1597
1608
.10.1016/j.compfluid.2010.05.012
5.
Mishra
,
D. P.
, and
Dash
,
S. K.
,
2010
, “
Prediction of Entrance Length and Mass Suction Rate for a Cylindrical Sucking Funnel
,”
Int. J. Numer. Methods Fluids
,
63
(
6
), pp.
681
700
.10.1002/fld.2106
6.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2015
, “
Experimental and Numerical Investigation of Air Entrainment Into an Infrared Suppression Device
,”
Appl. Therm. Eng.
,
75
, pp.
33
44
.10.1016/j.applthermaleng.2014.05.042
7.
Barik
,
A. K.
,
Dash
,
S. K.
,
Patro
,
P.
, and
Mohapatra
,
S.
,
2014
, “
Experimental and Numerical Investigation of Air Entrainment Into a Louvred Funnel
,”
Appl. Ocean Res.
,
48
, pp.
176
185
.10.1016/j.apor.2014.08.009
8.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2015
, “
Entrainment of Air Into an Infrared Suppression (IRS) Device Using Circular and Non-Circular Multiple Nozzles
,”
Comput. Fluids
,
114
, pp.
26
38
.10.1016/j.compfluid.2015.02.016
9.
Ganguly
,
V. R.
, and
Dash
,
S. K.
,
2019
, “
Experimental and Numerical Study of Air Entrainment Into a Louvered Conical IRS Device and Comparison With Existing IRS Devices
,”
Int. J. Therm. Sci.
,
141
, pp.
114
132
.10.1016/j.ijthermalsci.2019.03.034
10.
Ganguly
,
V. R.
, and
Dash
,
S. K.
,
2020
, “
Numerical Analysis of Air Entrainment and Exit Temperature of a Real Scale Conical Infrared Suppression (IRS) Device
,”
Int. J. Therm. Sci.
,
156
, p.
106482
.10.1016/j.ijthermalsci.2020.106482
11.
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2020
, “
Numerical Investigation of Flow and Heat Transfer Characteristics of a Full-Scale Infrared Suppression Device With Cylindrical Funnels
,”
Int. J. Therm. Sci.
,
153
, p.
106355
.10.1016/j.ijthermalsci.2020.106355
12.
Mukherjee
,
A.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2021
, “
Flow and Conjugate Heat Transfer With Surface Radiation Characteristics of a Real-Scale Infrared Suppression Device With Conical Funnels
,”
Int. Commun. Heat Mass Transfer
,
123
, p.
105208
.10.1016/j.icheatmasstransfer.2021.105208
13.
Mukherjee
,
A.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2021
, “
New Correlations for Flow and Conjugate Heat Transfer With Surface Radiation Characteristics of a Real-Scale Infrared Suppression System With Conical Funnels
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
8
), pp.
1
11
.10.1115/1.4051129
14.
Mohanty
,
A.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2019
, “
Natural Convection Cooling of an Infrared Suppression (IRS) Device With Cylindrical Funnels
,”
Int. J. Therm. Sci.
,
141
, pp.
103
113
.10.1016/j.ijthermalsci.2019.03.032
15.
Mohanty
,
A.
,
Kumar
,
S.
, and
Dash
,
S. K.
,
2020
, “
Natural Convection Cooling of an Infrared Suppression Device (IRS) With Conical Funnels- a Computational Approach
,”
Int. Commun. Heat Mass Transfer
,
118
, p.
104891
.10.1016/j.icheatmasstransfer.2020.104891
16.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
101
(
4
), pp.
718
725
.10.1115/1.3451063
17.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
, Vol.
1
,
Wiley
,
New York
.
18.
Abu-Hijleh
,
B. A. K.
,
Abu-Qudais
,
M.
, and
Abu Nada
,
E.
,
1999
, “
Numerical Prediction of Entropy Generation Due to Natural Convection From a Horizontal Cylinder
,”
Energy
,
24
(
4
), pp.
327
333
.10.1016/S0360-5442(98)00103-0
19.
Abu-Hijleh
,
B. A. K.
, and
Heilen
,
W. N.
,
1999
, “
Entropy Generation Due to Laminar Natural Convection Over a Heated Rotating Cylinder
,”
Int. J. Heat Mass Transfer
,
42
(
22
), pp.
4225
4233
.10.1016/S0017-9310(99)00078-2
20.
Famouri
,
M.
, and
Hooman
,
K.
,
2008
, “
Entropy Generation for Natural Convection by Heated Partitions in a Cavity
,”
Int. Commun. Heat Mass Transfer
,
35
(
4
), pp.
492
502
.10.1016/j.icheatmasstransfer.2007.09.009
21.
Mukhopadhyay
,
A.
,
2010
, “
Analysis of Entropy Generation Due to Natural Convection in Square Enclosures With Multiple Discrete Heat Sources
,”
Int. Commun. Heat Mass Transfer
,
37
(
7
), pp.
867
872
.10.1016/j.icheatmasstransfer.2010.05.007
22.
Naterer
,
G. F.
, and
Camberos
,
J. A.
,
2008
,
Entropy Based Design and Analysis of Fluids Engineering Systems
,
CRC Press
, Boca Raton, FL, pp.
1
327
.
23.
Moorhouse
,
D. J.
, and
Camberos
,
J. A.
,
2011
, “
Exergy Analysis and Design Optimization for Aerospace Vehicles and Systems
,”
AIAA, Reston, VA.
24.
Dinçer
,
I.
, and
Rosen
,
M. A.
,
2012
,
Exergy: Energy, Environment and Sustainable Development
,
Newnes
, Elsevier, The Boulevard, Oxford, UK.
25.
Haseli
,
Y.
,
2019
,
Entropy Analysis in Thermal Engineering Systems
,
Academic Press
, 125 Londan Wall, United Kingdom, pp.
1
214
.
26.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2017
, “
Entropy Generation in Laminar and Turbulent Natural Convection Heat Transfer From Vertical Cylinder With Annular Fins
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
4
), pp.
1
13
.10.1115/1.4035355
27.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2017
, “
Three-Dimensional Numerical Investigation of Thermodynamic Performance Due to Conjugate Natural Convection From Horizontal Cylinder With Annular Fins
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
8
), pp.
1
7
.10.1115/1.4035968
28.
Rana
,
B. K.
, and
Senapati
,
J. R.
,
2021
, “
Entropy Generation Analysis and Cooling Time Estimation for a Rotating Vertical Hollow Tube in the Air Medium
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
4
), p. 042101.10.1115/1.4049839
29.
Bejan
,
A.
, and
Lorente
,
S.
,
2008
,
Design With Constructal Theory
,
Wiley
, Hoboken, NJ.
30.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
31.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
, 4th ed.,
Wiley
, Hoboken, NJ.
32.
Bejan
,
A.
,
1996
, “
Entropy Generation Minimization: The New Thermodynamics of Finite Size Devices and Finite Time Processe
,”
J. Appl. Phys
,.
79
(
3
), pp.
1191
1218
.10.1063/1.362674
You do not currently have access to this content.