Abstract

Impingement cooling can effectively disperse local heat load, but its downstream heat transfer is always reduced due to crossflow effect. In this study, the flow and heat transfer characteristics of impingement cooling with semi-circular (SC), semi-rectangular (SR), semi-diamond (SD), and semi-four-pointed star (SFS) crossflow diverters are compared over the ReD ranging from 3,500 to 14,000 by solving three dimensional Reynolds-averaged Navier–Stokes equations with SST k–ω turbulence model. It is found that the arrangement of crossflow diverters changes the distribution of local jet Reynolds number (ReD,j/ReD) and reduces the mass velocity ratio of downstream crossflow to jet (Gcf/Gj), so the impingement heat transfer is enhanced significantly. However, friction loss also increases. Overall evaluation reveals that all crossflow diverters can improve the comprehensive heat transfer performance parameter (Φ), and the maximum increases of Φ are 11.0%, 14.3%, 12.2%, and 14.7% for SC, SR, SD, and SFS cases, respectively. It is noted that the Nusselt number of heated SFS-shaped diverter surface is also the highest. Besides, the influences of streamwise location (L) and thickness (t) of SFS-shaped diverter are also investigated. Results show that when the L increases from 2D to 3D, the heat transfer and friction loss change slightly; when the L increases from 3D to 4D, the heat transfer decreases sharply, and friction loss increases seriously. As for the t, it has almost no effect on the flow field and heat transfer.

References

1.
Han
,
B.
, and
Goldstein
,
R. J.
,
2006
, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
147
161
.10.1111/j.1749-6632.2001.tb05849.x
2.
Zuckerman
,
N.
, and
Lior
,
N.
,
2005
, “
Impingement Heat Transfer: Correlations and Numerical Modeling
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
5
), pp.
544
552
.10.1115/1.1861921
3.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
(
6
), pp.
565
631
.10.1016/S0065-2717(06)39006-5
4.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2007
, “
Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
367
380
.10.1016/j.ijheatmasstransfer.2006.06.007
5.
Chupp
,
R. E.
,
Helms
,
H. E.
,
McFadden
,
P. W.
, and
Brown
,
T. R.
,
1969
, “
Evaluation of Internal Heat Transfer Coefficients for Impingement-Cooled Turbine Airfoils
,”
J. Aircr.
,
6
(
3
), pp.
203
208
.10.2514/3.44036
6.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
9
), pp.
53
58
.10.1115/1.4001633
7.
Yamane
,
Y.
,
Makoto
,
Y.
, and
Shinji
,
H.
,
2012
, “
Effect of Cross-Shape Circular Jet Array on Impingement Heat Transfer
,”
ASME
Paper No. GT2012-68199.10.1115/GT2012-68199
8.
Yamane
,
Y.
,
Makoto
,
Y.
,
Masahiro
,
M.
, and
Shinji
,
H.
,
2013
, “
Effect of Jet Shape of Square Array of Multi-Impinging Jets on Heat Transfer
,”
ASME
Paper No. GT2013-94452.10.1115/GT2013-94452
9.
Taslim
,
M. E.
,
Setayeshgar
,
L.
, and
Spring
,
S. D.
,
2001
, “
An Experimental Evaluation of Advanced Leading Edge Impingement Cooling Concepts
,”
ASME J. Turbomach.
,
123
(
1
), pp.
147
153
.10.1115/1.1331537
10.
Taslim
,
M. E.
,
Bakhtari
,
K.
, and
Liu
,
H.
,
2003
, “
Experimental and Numerical Investigation of Impingement on a Rib-Roughened Leading-Edge Wall
,”
ASME J. Turbomach.
,
125
(
4
), pp.
682
691
.10.1115/1.1624848
11.
Shen
,
Z. Y.
,
Jing
,
Q.
,
Xie
,
Y. H.
, and
Zhang
,
D.
,
2017
, “
Thermal Performance of Miniscale Heat Sink With Jet Impingement and Dimple/Protrusion Structure
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
5
), p.
052202
.10.1115/1.4036035
12.
Jing
,
Q.
,
Shen
,
Z. Y.
,
Xie
,
Y. H.
, and
Zhang
,
D.
,
2018
, “
Numerical Investigations of Impingement Cooling Performance on Flat and Non-Flat Targets With Dimple/Protrusion and Triangular Rib
,”
Int. J. Heat Mass Transfer
,
126
, pp.
169
190
.10.1016/j.ijheatmasstransfer.2018.05.009
13.
Goldstein
,
R. J.
, and
Behbahani
,
A. I.
,
1982
, “
Impingement of a Circular Jet With and Without Cross Flow
,”
Int. J. Heat Mass Transfer
,
25
(
9
), pp.
1377
1382
.10.1016/0017-9310(82)90131-4
14.
Cheong
,
B. C. Y.
,
Ireland
,
P. T.
,
Ling
,
J. P. C. W.
, and
Ashforth-Frost
,
S.
,
2005
, “
Flow and Heat Transfer Characteristics of an Impinging Jet in Crossflow at Low Nozzle-to-Plate Spacings
,”
ASME
Paper No. GT2005-68636.10.1115/GT2005-68636
15.
Florschuetz
,
L. W.
,
Berry
,
R. A.
, and
Metzger
,
D. E.
,
1980
, “
Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer-Trans. ASME
,
102
(
1
), pp.
132
137
.10.1115/1.3244224
16.
Rao
,
A. G.
,
Belinkov
,
M. K.
,
Krapp
,
V.
, and
Levy
,
Y.
,
2010
, “
Heat Transfer Investigations in Multiple Impinging Jets at Low Reynolds Number
,”
ASME
Paper No. GT2010-22720.10.1115/GT2010-22720
17.
Paz
,
M. L. D.
, and
Jubran
,
B. A.
,
2010
, “
A Numerical Study of an Impingement Array Inside a Three-Dimensional Turbine Vane
,”
ASME
Paper No. GT2010-22270.10.1115/GT2010-22270
18.
Wen
,
M. Y.
, and
Jang
,
K. J.
,
2003
, “
An Impingement Cooling on a Flat Surface by Using Circular Jet With Longitudinal Swirling Strips
,”
Int. J. Heat Mass Transfer
,
46
(
24
), pp.
4657
4667
.10.1016/S0017-9310(03)00302-8
19.
Eroglu
,
A.
, and
Breidenthal
,
R. E.
,
2001
, “
Structure, Penetration, and Mixing of Pulsed Jets in Crossflow
,”
AIAA J.
,
39
(
3
), pp.
417
423
.10.2514/2.1351
20.
Yu
,
Y.
,
Zhang
,
J.
, and
Shan
,
Y.
,
2015
, “
Convective Heat Transfer of a Row of Air Jets Impingement Excited by Triangular Tabs in a Confined Crossflow Channel
,”
Int. J. Heat Mass Transfer
,
80
, pp.
126
138
.10.1016/j.ijheatmasstransfer.2014.08.066
21.
Wang
,
L.
,
Sundén
,
B.
,
Borg
,
A.
, and
Abrahamsson
,
H.
,
2011
, “
Control of Jet Impingement Heat Transfer in Crossflow by Using a Rib
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4157
4166
.10.1016/j.ijheatmasstransfer.2011.06.004
22.
Wang
,
C. L.
,
Wang
,
L.
,
Sundén
,
B.
, and
Revstedt
,
J.
,
2015
, “
Effects of a Vortex Generator Pair on Jet Impingement Heat Transfer in Cross-Flow
,”
ASME
Paper No. GT2015-42236.10.1115/GT2015-42236
23.
Wang
,
C. L.
,
Luo
,
L.
,
Wang
,
L.
, and
Sundén
,
B.
,
2016
, “
Heat Transfer and Fluid Flow of a Single Jet Impingement in Crossflow Modified by a Vortex Generator Pair
,”
ASME
Paper No. GT2016-56894.10.1115/GT2016-56894
24.
Wang
,
C. L.
,
Wang
,
L.
, and
Sundén
,
B.
,
2015
, “
A Novel Control of Jet Impingement Heat Transfer in Cross-Flow by a Vortex Generator Pair
,”
Int. J. Heat Mass Transfer
,
88
(
9
), pp.
82
90
.10.1016/j.ijheatmasstransfer.2015.04.056
25.
Wang
,
C. L.
,
Luo
,
L.
,
Wang
,
L.
, and
Sundén
,
B.
,
2016
, “
Effects of Vortex Generator on the Jet Impingement Heat Transfer at Different Cross-Flow Reynolds Number
,”
Int. J. Heat Mass Transfer
,
96
(
5
), pp.
278
286
.10.1016/j.ijheatmasstransfer.2016.01.042
26.
Xiao
,
K.
,
He
,
J.
, and
Feng
,
Z. P.
,
2021
, “
Effects of Alternating Elliptical Chamber on Jet Impingement Heat Transfer in Vane Leading Edge Under Different Cross Flow Conditions
,”
Aeronaut. J.
,
125
(
1291
), pp.
1484
1500
.10.1017/aer.2021.31
27.
Terzis
,
A.
,
Ott
,
P.
,
Cochet
,
M.
,
Wolfersdorf
,
J. V.
, and
Weigand
,
B.
,
2014
, “
Effect of Varying Jet Diameter on the Heat Transfer Distributions of Narrow Impingement Channels
,”
ASME J. Turbomach.
,
137
(
2
), p.
021004
.10.1115/1.4028294
28.
Terzis
,
A.
,
Ott
,
P.
,
Cochet
,
M.
,
Wolfersdorf
,
J. V.
, and
Weigand
,
B.
,
2016
, “
Aerothermal Investigation of a Single Row Divergent Narrow Impingement Channel by Particle Image Velocimetry and Liquid Crystal Thermography
,”
ASME J. Turbomach.
,
138
(
5
), p.
051003
.10.1115/1.4032328
29.
Esposito
,
E. I.
,
Ekkad
,
S. V.
,
Kim
,
Y.
, and
Dutta
,
P.
,
2009
, “
Novel Jet Impingement Cooling Geometry for Combustor Liner Backside Cooling
,”
ASME J. Therm. Sci. Eng. Appl.,
1
(
2
), pp.
427
432
.10.1115/1.3202799
30.
Chi
,
Z. R.
,
Kan
,
R.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2013
, “
Experimental and Numerical Study of the Anti-Crossflow Impingement Cooling Structure
,”
Int. J. Heat Mass Transfer
,
64
, pp.
567
580
.10.1016/j.ijheatmasstransfer.2013.04.052
31.
Liu
,
K. X.
, and
Zhang
,
Q.
,
2020
, “
A Novel Multi-Stage Impingement Cooling Scheme—Part I: Concept Study
,”
ASME J. Turbomach.
,
142
(
12
), p.
121008
.10.1115/1.4048183
32.
Liu
,
K. X.
, and
Zhang
,
Q.
,
2020
, “
A Novel Multi-Stage Impingement Cooling Scheme—Part II: Design Optimization
,”
ASME J. Turbomach.
,
142
(
12
), p.
121009
.10.1115/1.4048184
33.
Madhavan
,
S.
,
Ramakrishnan
,
K. R.
,
Singh
,
P.
, and
Ekkad
,
S.
,
2020
, “
Jet Impingement Heat Transfer Enhancement by U-Shaped Crossflow Diverters
,”
ASME J Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041005
.10.1115/1.4045514
34.
Fan
,
J. F.
,
Ding
,
W. K.
,
Zhang
,
J. F.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
A Performance Evaluation Plot of Enhanced Heat Transfer Techniques Oriented for Energy-Saving
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
33
44
.10.1016/j.ijheatmasstransfer.2008.07.006
You do not currently have access to this content.