Abstract

Irreversible electroporation (IRE), also referred to as nonthermal pulsed field ablation (PFA), is an attractive focal ablation modality for solid tumors and cardiac tissue due to its ability to destroy aberrant cells with limited disruption of the underlying tissue architecture. Despite its nonthermal cell death mechanism, application of electrical energy results in Joule heating that, if ignored, can cause undesired thermal injury. Engineered thermal mitigation (TM) technologies including phase change materials (PCMs) and active cooling (AC) have been reported and tested as a potential means to limit thermal damage. However, several variables affect TM performance including the pulsing paradigm, electrode geometry, PCM composition, and chosen active cooling parameters, meaning direct comparisons between approaches are lacking. In this study, we developed a computational model of conventional bipolar and monopolar probes with solid, PCM-filled, or actively cooled cores to simulate clinical IRE treatments in pancreatic tissue. This approach reveals that probes with integrated PCM cores can be tuned to drastically limit thermal damage compared to existing solid probes. Furthermore, actively cooled probes provide additional control over thermal effects within the probe vicinity and can altogether abrogate thermal damage. In practice, such differences in performance must be weighed against the increased time, expense, and effort required for modified probes compared to existing solid probes.

References

1.
Geboers
,
B.
,
Scheffer
,
H. J.
,
Graybill
,
P. M.
,
Ruarus
,
A. H.
,
Nieuwenhuizen
,
S.
,
Puijk
,
R. S.
,
van den Tol
,
P. M.
,
Davalos
,
R. V.
,
Rubinsky
,
B.
,
de Gruijl
,
T. D.
,
Miklavčič
,
D.
, and
Meijerink
,
M. R.
,
2020
, “
High-Voltage Electrical Pulses in Oncology: Irreversible Electroporation, Electrochemotherapy, Gene Electrotransfer, Electrofusion, and Electroimmunotherapy
,”
Radiology
,
295
(
2
), pp.
254
272
.10.1148/radiol.2020192190
2.
Maor
,
E.
,
Sugrue
,
A.
,
Witt
,
C.
,
Vaidya
,
V. R.
,
DeSimone
,
C. V.
,
Asirvatham
,
S. J.
, and
Kapa
,
S.
,
2019
, “
Pulsed Electric Fields for Cardiac Ablation and Beyond: A State-of-the-Art Review
,”
Hear. Rhythm
,
16
(
7
), pp.
1112
1120
.10.1016/j.hrthm.2019.01.012
3.
Weaver
,
J. C.
,
Smith
,
K. C.
,
Esser
,
A. T.
,
Son
,
R. S.
, and
Gowrishankar
,
T. R.
,
2012
, “
A Brief Overview of Electroporation Pulse Strength-Duration Space: A Region Where Additional Intracellular Effects Are Expected
,”
Bioelectrochemistry
,
87
, pp.
236
243
.10.1016/j.bioelechem.2012.02.007
4.
Yarmush
,
M. L.
,
Golberg
,
A.
,
Serša
,
G.
,
Kotnik
,
T.
, and
Miklavčič
,
D.
,
2014
, “
Electroporation-Based Technologies for Medicine: Principles, Applications, and Challenges
,”
Annu. Rev. Biomed. Eng.
,
16
(
1
), pp.
295
320
.10.1146/annurev-bioeng-071813-104622
5.
Brock
,
R. M.
,
Beitel-White
,
N.
,
Davalos
,
R. V.
, and
Allen
,
I. C.
,
2020
, “
Starting a Fire Without Flame: The Induction of Cell Death and Inflammation in Electroporation-Based Tumor Ablation Strategies
,”
Front. Oncol.
,
10
, p. 1235.10.3389/fonc.2020.01235
6.
Batista Napotnik
,
T.
,
Polajžer
,
T.
, and
Miklavčič
,
D.
,
2021
, “
Cell Death Due to Electroporation—A Review
,”
Bioelectrochemistry
,
141
, p.
107871
.10.1016/j.bioelechem.2021.107871
7.
Maor
,
E.
,
Ivorra
,
A.
,
Leor
,
J.
, and
Rubinsky
,
B.
,
2007
, “
The Effect of Irreversible Electroporation on Blood Vessels
,”
Technol. Cancer Res. Treat.
,
6
(
4
), pp.
307
312
.10.1177/153303460700600407
8.
Li
,
W.
,
Fan
,
Q.
,
Ji
,
Z.
,
Qiu
,
X.
, and
Li
,
Z.
,
2011
, “
The Effects of Irreversible Electroporation (IRE) on Nerves
,”
PLoS One
,
6
(
4
), p.
e18831
.10.1371/journal.pone.0018831
9.
Vogel
,
J. A.
,
Van Veldhuisen
,
E.
,
Agnass
,
P.
,
Crezee
,
J.
,
Dijk
,
F.
,
Verheij
,
J.
,
Van Gulik
,
T. M.
,
Meijerink
,
M. R.
,
Vroomen
,
L. G.
,
Van Lienden
,
K. P.
, and
Besselink
,
M. G.
,
2016
, “
Time-Dependent Impact of Irreversible Electroporation on Pancreas, Liver, Blood Vessels and Nerves: A Systematic Review of Experimental Studies
,”
PLoS One
,
11
(
11
), p.
e0166987
.10.1371/journal.pone.0166987
10.
Narayanan
,
G.
,
Bhatia
,
S.
,
Echenique
,
A.
,
Suthar
,
R.
,
Barbery
,
K.
, and
Yrizarry
,
J.
,
2014
, “
Vessel Patency Post Irreversible Electroporation
,”
Cardiovasc. Intervent. Radiol.
,
37
(
6
), pp.
1523
1529
.10.1007/s00270-014-0988-9
11.
Muthalaly
,
R. G.
,
John
,
R. M.
,
Schaeffer
,
B.
,
Tanigawa
,
S.
,
Nakamura
,
T.
,
Kapur
,
S.
,
Zei
,
P. C.
,
Epstein
,
L. M.
,
Tedrow
,
U. B.
,
Michaud
,
G. F.
,
Stevenson
,
W. G.
, and
Koplan
,
B. A.
,
2018
, “
Temporal Trends in Safety and Complication Rates of Catheter Ablation for Atrial Fibrillation
,”
J. Cardiovasc. Electrophysiol.
,
29
(
6
), pp.
854
860
.10.1111/jce.13484
12.
Narayanan
,
G.
,
Hosein
,
P. J.
,
Arora
,
G.
,
Barbery
,
K. J.
,
Froud
,
T.
,
Livingstone
,
A. S.
,
Franceschi
,
D.
,
Rocha Lima
,
C. M.
, and
Yrizarry
,
J.
,
2012
, “
Percutaneous Irreversible Electroporation for Downstaging and Control of Unresectable Pancreatic Adenocarcinoma
,”
J. Vasc. Interv. Radiol.
,
23
(
12
), pp.
1613
1621
.10.1016/j.jvir.2012.09.012
13.
Martin
,
R. C. G.
,
Kwon
,
D.
,
Chalikonda
,
S.
,
Sellers
,
M.
,
Kotz
,
E.
,
Scoggins
,
C.
,
McMasters
,
K. M.
, and
Watkins
,
K.
,
2015
, “
Treatment of 200 Locally Advanced (Stage III) Pancreatic Adenocarcinoma Patients With Irreversible Electroporation Safety and Efficacy
,”
Ann. Surg.
,
262
(
3
), pp.
486
492
.10.1097/SLA.0000000000001441
14.
Davalos
,
R. V.
,
Mir
,
L. M.
, and
Rubinsky
,
B.
,
2005
, “
Tissue Ablation With Irreversible Electroporation
,”
Ann. Biomed. Eng.
,
33
(
2
), pp.
223
231
.10.1007/s10439-005-8981-8
15.
Garcia
,
P. A.
,
Rossmeisl
,
J. H.
,
Neal
,
R. E.
,
Ellis
,
T. L.
, and
Davalos
,
R. V.
,
2011
, “
A Parametric Study Delineating Irreversible Electroporation From Thermal Damage Based on a Minimally Invasive Intracranial Procedure
,”
Biomed. Eng. Online
,
10
, p.
34
.10.1186/1475-925X-10-34
16.
Cindric
,
H.
,
Mariappan
,
P.
,
Beyer
,
L.
,
Wiggermann
,
P.
,
Moche
,
M.
,
Miklavcic
,
D.
, and
Kos
,
B.
,
2021
, “
Retrospective Study for Validation and Improvement of Numerical Treatment Planning of Irreversible Electroporation Ablation for Treatment of Liver Tumors
,”
IEEE Trans. Biomed. Eng.
,
68
(
12
), pp.
3513
3524
.10.1109/TBME.2021.3075772
17.
Philips
,
P.
,
Hays
,
D.
, and
Martin
,
R. C. G.
,
2013
, “
Irreversible Electroporation Ablation (IRE) of Unresectable Soft Tissue Tumors: Learning Curve Evaluation in the First 150 Patients Treated
,”
PLoS One
,
8
(
11
), p.
e76260
.10.1371/journal.pone.0076260
18.
Agnass
,
P.
,
van Veldhuisen
,
E.
,
van Gemert
,
M. J. C.
,
van der Geld
,
C. W. M.
,
van Lienden
,
K. P.
,
van Gulik
,
T. M.
,
Meijerink
,
M. R.
,
Besselink
,
M. G.
,
Kok
,
H. P.
, and
Crezee
,
J.
,
2020
, “
Mathematical Modeling of the Thermal Effects of Irreversible Electroporation for In Vitro, In Vivo, and Clinical Use: A Systematic Review
,”
Int. J. Hyperth.
,
37
(
1
), pp.
486
505
.10.1080/02656736.2020.1753828
19.
Ansari
,
D.
,
Kristoffersson
,
S.
,
Andersson
,
R.
, and
Bergenfeldt
,
M.
,
2017
, “
The Role of Irreversible Electroporation (IRE) for Locally Advanced Pancreatic Cancer: A Systematic Review of Safety and Efficacy
,”
Scand. J. Gastroenterol.
,
52
(
11
), pp.
1165
1171
.10.1080/00365521.2017.1346705
20.
Dunki-Jacobs
,
E. M.
,
Philips
,
P.
, and
Martin
,
R. C. G.
,
2014
, “
Evaluation of Thermal Injury to Liver, Pancreas and Kidney During Irreversible Electroporation in an In Vivo Experimental Model
,”
Br. J. Surg.
,
101
(
9
), pp.
1113
1121
.10.1002/bjs.9536
21.
Wandel
,
A.
,
Ben-David
,
E.
,
Ulusoy
,
B. S.
,
Neal
,
R.
,
Faruja
,
M.
,
Nissenbaum
,
I.
,
Gourovich
,
S.
, and
Goldberg
,
S. N.
,
2016
, “
Optimizing Irreversible Electroporation Ablation With a Bipolar Electrode
,”
J. Vasc. Interv. Radiol.
,
27
(
9
), pp.
1441
1450.e2
.10.1016/j.jvir.2016.06.001
22.
Buist
,
T. J.
,
Groen
,
M. H. A.
,
Wittkampf
,
F. H. M.
,
Loh
,
P.
,
Doevendans
,
P. A. F. M.
,
Van Es
,
R.
, and
Elvan
,
A.
,
2021
, “
Efficacy of Multi-Electrode Linear Irreversible Electroporation
,”
Europace
,
23
(
3
), pp.
464
468
.10.1093/europace/euaa280
23.
O'Brien
,
T. J.
,
Lorenzo
,
M. F.
,
Zhao
,
Y.
,
Neal
,
R. E.
, II
,
Robertson
,
J. L.
,
Goldberg
,
S. N.
, and
Davalos
,
R. V.
,
2019
, “
Cycled Pulsing to Mitigate Thermal Damage for Multi-Electrode Irreversible Electroporation Therapy
,”
Int. J. Hyperth.
,
36
(
1
), pp.
953
963
.10.1080/02656736.2019.1657187
24.
Ren
,
F.
,
Li
,
Q.
,
Gao
,
X.
,
Zhu
,
K.
,
Zhang
,
J.
,
Chen
,
X.
,
Yan
,
X.
,
Chu
,
D.
,
Hu
,
L.
,
Gao
,
Z.
,
Wu
,
Z.
,
Wu
,
R.
, and
Lv
,
Y.
,
2019
, “
Electrical and Thermal Analyses of Catheter-Based Irreversible Electroporation of Digestive Tract
,”
Int. J. Hyperth.
,
36
(
1
), pp.
854
867
.10.1080/02656736.2019.1646928
25.
Yang
,
Y.
,
Moser
,
M.
,
Zhang
,
E.
,
Zhang
,
W.
, and
Zhang
,
B.
,
2018
, “
Optimization of Electrode Configuration and Pulse Strength in Irreversible Electroporation for Large Ablation Volumes Without Thermal Damage
,”
ASME J. Eng. Sci. Med. Diagnost. Ther.
,
1
(
2
), p.
021002
.10.1115/1.4038791
26.
Shao
,
Q.
,
O'Flanagan
,
S.
,
Lam
,
T.
,
Roy
,
P.
,
Pelaez
,
F.
,
Burbach
,
B. J.
,
Azarin
,
S. M.
,
Shimizu
,
Y.
, and
Bischof
,
J. C.
,
2019
, “
Engineering T Cell Response to Cancer Antigens by Choice of Focal Therapeutic Conditions
,”
Int. J. Hyperth
,.,
36
(
1
), pp.
130
138
.10.1080/02656736.2018.1539253
27.
Zhao
,
J.
,
Wen
,
X.
,
Tian
,
L.
,
Li
,
T.
,
Xu
,
C.
,
Wen
,
X.
,
Melancon
,
M. P.
,
Gupta
,
S.
,
Shen
,
B.
,
Peng
,
W.
, and
Li
,
C.
,
2019
, “
Irreversible Electroporation Reverses Resistance to Immune Checkpoint Blockade in Pancreatic Cancer
,”
Nat. Commun.
,
10
(
1
), p.
899
.10.1038/s41467-019-08782-1
28.
Beitel-White
,
N.
,
Martin
,
R. C. G.
,
Li
,
Y.
,
Brock
,
R. M.
,
Allen
,
I. C.
, and
Davalos
,
R. V.
,
2019
, “
Real-Time Prediction of Patient Immune Cell Modulation During Irreversible Electroporation Therapy
,”
Sci. Rep.
,
9
(
1
), p.
17739
.10.1038/s41598-019-53974-w
29.
O'Brien
,
T. J.
,
Bonakdar
,
M.
,
Bhonsle
,
S.
,
Neal
,
R. E.
,
Aardema
,
C. H.
,
Robertson
,
J. L.
,
Goldberg
,
S. N.
, and
Davalos
,
R. V.
,
2018
, “
Effects of Internal Electrode Cooling on Irreversible Electroporation Using a Perfused Organ Model
,”
Int. J. Hyperth.
,
35
(
1
), pp.
44
55
.10.1080/02656736.2018.1473893
30.
Arena
,
C. B.
,
Mahajan
,
R. L.
,
Rylander
,
M. N.
, and
Davalos
,
R. V.
,
2012
, “
Towards the Development of Latent Heat Storage Electrodes for Electroporation-Based Therapies
,”
Appl. Phys. Lett.
,
101
(
8
), p.
083902
.10.1063/1.4747332
31.
Arena
,
C. B.
,
Mahajan
,
R. L.
,
Nichole Rylander
,
M.
, and
Davalos
,
R. V.
,
2013
, “
An Experimental and Numerical Investigation of Phase Change Electrodes for Therapeutic Irreversible Electroporation
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111009
.10.1115/1.4025334
32.
Zhao
,
Y.
, and
Davalos
,
R. V.
,
2020
, “
Development of an Endothermic Electrode for Electroporation-Based Therapies: A Simulation Study
,”
Appl. Phys. Lett.
,
117
(
14
), pp.
143702
5
.10.1063/5.0019743
33.
Garcia
,
P. A.
,
Davalos
,
R. V.
, and
Miklavcic
,
D.
,
2014
, “
A Numerical Investigation of the Electric and Thermal Cell Kill Distributions in Electroporation-Based Therapies in Tissue
,”
PLoS One
,
9
(
8
), p.
e103083
.10.1371/journal.pone.0103083
34.
Davalos
,
R. V.
, and
Rubinsky
,
B.
,
2008
, “
Temperature Considerations During Irreversible Electroporation
,”
Int. J. Heat Mass Transfer
,
51
(
23–24
), pp.
5617
5622
.10.1016/j.ijheatmasstransfer.2008.04.046
35.
Mohammadi
,
A.
,
Bianchi
,
L.
,
Asadi
,
S.
, and
Saccomandi
,
P.
,
2021
, “
Measurement of Ex Vivo Liver, Brain and Pancreas Thermal Properties as Function of Temperature
,”
Sensors
,
21
(
12
), p.
4236
.10.3390/s21124236
36.
Garcia
,
P. A.
,
Pearce
,
J. A.
, and
Davalos
,
R. V.
,
2012
, “
A Comparison Between the Pulsed and Duty Cycle Approaches Used to Capture the Thermal Response of Tissue During Electroporation-Based Therapies
,”
ASME Paper No. SBC 2012.
37.
Diller
,
K. R.
, and
Hayes
,
L. J.
,
1983
, “
A Finite Element Model of Burn Injury in Blood–Perfused Skin
,”
ASME J. Biomech. Eng.
,
105
(
3
), pp.
300
307
.10.1115/1.3138423
38.
Beitel-White
,
N.
,
Lorenzo
,
M. F.
,
Zhao
,
Y.
,
Brock
,
R.
,
Coutermarsh-Ott
,
S.
,
Allen
,
I. C.
,
Manuchehrabadi
,
N.
, and
Davalos
,
R. V.
,
2021
, “
Multi-Tissue Analysis on the Impact of Electroporation on Electrical and Thermal Properties
,”
IEEE Trans. Biomed. Eng.
,
68
(
3
), pp.
771
782
.10.1109/TBME.2020.3013572
39.
Ngo
,
I. L.
,
Jeon
,
S.
, and
Byon
,
C.
,
2016
, “
Thermal Conductivity of Transparent and Flexible Polymers Containing Fillers: A Literature Review
,”
Int. J. Heat Mass Transfer
,
98
, pp.
219
226
.10.1016/j.ijheatmasstransfer.2016.02.082
40.
Hasgall
,
P.
,
Di Gennaro
,
F.
,
Baumgartner
,
C.
,
Neufeld
,
E.
,
Lloyd
,
B.
,
Gosselin
,
M.
,
Payne
,
D.
,
Klingenbock
,
A.
, and
Kuster
,
N.
,
2021
, “
IT'IS Database for Thermal and Electromagnetic Parameters of Biological Tissues
,”
Version 4.0
, May 15, 2018.10.13099/VIP21000-04-0.itis.swiss/database
41.
O'brien
,
T. J.
,
2019
, “An Investigation of Thermal Mitigation Strategies for Electroporation-Based Therapies,” Ph.D. dissertation, Virginia Tech.
42.
Liu
,
D.
, and
Yu
,
L.
,
2010
, “
Experimental Investigation of Single-Phase Convective Heat Transfer of Nanofluids in a Minichannel
,”
ASME
Paper No. IHTC14-23018.10.1115/IHTC14-23018
43.
Jourabchi
,
N.
,
Beroukhim
,
K.
,
Tafti
,
B. A.
,
Kee
,
S. T.
, and
Lee
,
E. W.
,
2014
, “
Irreversible Electroporation (NanoKnife) in Cancer Treatment
,”
Gastrointest. Interv.
,
3
(
1
), pp.
8
18
.10.1016/j.gii.2014.02.002
44.
Sano
,
M. B.
,
Fesmire
,
C. C.
, and
Petrella
,
R. A.
,
2021
, “
Electro-Thermal Therapy Algorithms and Active Internal Electrode Cooling Reduce Thermal Injury in High Frequency Pulsed Electric Field Cancer Therapies
,”
Ann. Biomed. Eng.
,
49
, pp.
191
202
.10.1007/s10439-020-02524-x
45.
Edelblute
,
C. M.
,
Hornef
,
J.
,
Burcus
,
N. I.
,
Norman
,
T.
,
Beebe
,
S. J.
,
Schoenbach
,
K.
,
Heller
,
R.
,
Jiang
,
C.
, and
Guo
,
S.
,
2017
, “
Controllable Moderate Heating Enhances the Therapeutic Efficacy of Irreversible Electroporation for Pancreatic Cancer
,”
Sci. Rep.
,
7
(
1
), p.
11767
.10.1038/s41598-017-12227-4
46.
Baur
,
A. D. J.
,
Collettini
,
F.
,
Enders
,
J.
,
Maxeiner
,
A.
,
Schreiter
,
V.
,
Stephan
,
C.
,
Gebauer
,
B.
,
Hamm
,
B.
, and
Fischer
,
T.
,
2017
, “
MRI-TRUS Fusion for Electrode Positioning During Irreversible Electroporation for Treatment of Prostate Cancer
,”
Diagnos. Interv. Radiol.
,
23
(
4
), pp.
321
325
.10.5152/dir.2017.16276
47.
Neal
,
R. E.
,
Millar
,
J. L.
,
Kavnoudias
,
H.
,
Royce
,
P.
,
Rosenfeldt
,
F.
,
Pham
,
A.
,
Smith
,
R.
,
Davalos
,
R. V.
, and
Thomson
,
K. R.
,
2014
, “
In Vivo Characterization and Numerical Simulation of Prostate Properties for Non-Thermal Irreversible Electroporation Ablation
,”
Prostate
,
74
(
5
), pp.
458
468
.10.1002/pros.22760
48.
Campelo
,
S.
,
Valerio
,
M.
,
Ahmed
,
H. U.
,
Hu
,
Y.
,
Arena
,
S. L.
,
Neal
,
R. E.
,
Emberton
,
M.
, and
Arena
,
C. B.
,
2017
, “
An Evaluation of Irreversible Electroporation Thresholds in Human Prostate Cancer and Potential Correlations to Physiological Measurements
,”
APL Bioeng.
,
1
(
1
), p.
016101
.10.1063/1.5005828
49.
Checcucci
,
E.
,
Amparore
,
D.
,
De Luca
,
S.
,
Autorino
,
R.
,
Fiori
,
C.
, and
Porpiglia
,
F.
,
2019
, “
Precision Prostate Cancer Surgery: An Overview of New Technologies and Techniques
,”
Minerva Urol. Nefrol.
,
71
(
5
), pp.
487
501
.10.23736/S0393-2249.19.03365-4
50.
Su
,
W.
,
Darkwa
,
J.
, and
Kokogiannakis
,
G.
,
2015
, “
Review of Solid-Liquid Phase Change Materials and Their Encapsulation Technologies
,”
Renewable Sustainable Energy Rev.
,
48
, pp.
373
391
.10.1016/j.rser.2015.04.044
51.
Jankowski
,
N. R.
, and
McCluskey
,
F. P.
,
2014
, “
A Review of Phase Change Materials for Vehicle Component Thermal Buffering
,”
Appl. Energy
,
113
, pp.
1525
1561
.10.1016/j.apenergy.2013.08.026
52.
Zalba
,
B.
,
Marı́n
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.10.1016/S1359-4311(02)00192-8
53.
Kaufman
,
J. D.
,
Fesmire
,
C. C.
,
Petrella
,
R. A.
,
Fogle
,
C. A.
,
Xing
,
L.
,
Gerber
,
D.
, and
Sano
,
M. B.
,
2020
, “
High-Frequency Irreversible Electroporation Using 5,000-V Waveforms to Create Reproducible 2- and 4-Cm Ablation Zones—a Laboratory Investigation Using Mechanically Perfused Liver
,”
J. Vasc. Interv. Radiol.
,
31
(
1
), pp.
162
168
.10.1016/j.jvir.2019.05.009
54.
Zhao
,
Y.
,
McKillop
,
I. H.
, and
Davalos
,
R. V.
,
2021
, “
Modeling of a Single Bipolar Electrode With Tines for Irreversible Electroporation Delivery
,”
Comput. Biol. Med.
, p.
104870
.10.1016/j.compbiomed.2021.104870
You do not currently have access to this content.