Abstract

Nanoparticles (NPs) are promising agents to absorb external energy and generate heat. Clusters of NPs or NP array heating have found an essential role in several biomedical applications, diagnostic techniques, and chemical catalysis. Various studies have shed light on the heat transfer of nanostructures and greatly advanced our understanding of NP array heating. However, there is a lack of analytical tools and dimensionless parameters to describe the transient heating of NP arrays. Here we demonstrate a comprehensive analysis of the transient NP array heating. Firstly, we develop a set of analytical solutions for the NP array heating and provide a useful mathematical description of the spatial-temporal evolution of temperature for 2D, 3D, and spherical NP array heating. Based on this, we introduce the concept of thermal resolution that quantifies the relationship between minimal heating time, NP array size, energy intensity, and target temperature. Lastly, we define a set of dimensionless parameters that characterize the transition from confined heating to delocalized heating. This study advances the understanding of nanomaterials heating and guides the rational design of innovative approaches for NP array heating.

References

1.
Park
,
J.
,
Huang
,
J.
,
Wang
,
W.
,
Murphy
,
C. J.
, and
Cahill
,
D. G.
,
2012
, “
Heat Transport Between Au Nanorods, Surrounding Liquids, and Solid Supports
,”
J. Phys. Chem. C
,
116
(
50
), pp.
26335
26341
.10.1021/jp308130d
2.
Qin
,
Z.
, and
Bischof
,
J. C.
,
2012
, “
Thermophysical and Biological Responses of Gold Nanoparticle Laser Heating
,”
Chem. Soc. Rev.
,
41
(
3
), pp.
1191
1217
.10.1039/C1CS15184C
3.
Deatsch
,
A. E.
, and
Evans
,
B. A.
,
2014
, “
Heating Efficiency in Magnetic Nanoparticle Hyperthermia
,”
J. Magn. Magn. Mater.
,
354
, pp.
163
172
.10.1016/j.jmmm.2013.11.006
4.
Pustovalov
,
V. K.
,
2005
, “
Theoretical Study of Heating of Spherical Nanoparticle in Media by Short Laser Pulses
,”
Chem. Phys.
,
308
(
1–2
), pp.
103
108
.10.1016/j.chemphys.2004.08.005
5.
Huang
,
X.
,
Jain
,
P. K.
,
El-Sayed
,
I. H.
, and
El-Sayed
,
M. A.
,
2008
, “
Plasmonic Photothermal Therapy (PPTT) Using Gold Nanoparticles
,”
Lasers Med. Sci.
,
23
(
3
), pp.
217
228
.10.1007/s10103-007-0470-x
6.
Hu
,
C. M.
,
Aryal
,
S.
, and
Zhang
,
L.
,
2010
, “
Nanoparticle-Assisted Combination Therapies for Effective Cancer Treatment
,”
Ther. Deliv.
,
1
(
2
), pp.
323
334
.10.4155/tde.10.13
7.
Riley
,
R. S.
, and
Day
,
E. S.
,
2017
, “
Gold Nanoparticle-Mediated Photothermal Therapy: Applications and Opportunities for Multimodal Cancer Treatment
,”
Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
,
9
(
4
), p. e1449.10.1002/wnan.1449
8.
Zhi
,
D.
,
Yang
,
T.
,
O'hagan
,
J.
,
Zhang
,
S.
, and
Donnelly
,
R. F.
,
2020
, “
Photothermal Therapy
,”
J. Control. Release
,
325
, pp.
52
71
.10.1016/j.jconrel.2020.06.032
9.
Richardson
,
H. H.
,
Carlson
,
M. T.
,
Tandler
,
P. J.
,
Hernandez
,
P.
, and
Govorov
,
A. O.
,
2009
, “
Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions
,”
Nano Lett.
,
9
(
3
), pp.
1139
1146
.10.1021/nl8036905
10.
Niikura
,
K.
,
Iyo
,
N.
,
Matsuo
,
Y.
,
Mitomo
,
H.
, and
Ijiro
,
K.
,
2013
, “
Sub-100 nm Gold Nanoparticle Vesicles as a Drug Delivery Carrier Enabling Rapid Drug Release Upon Light Irradiation
,”
ACS Appl. Mater. Interfaces
,
5
(
9
), pp.
3900
3907
.10.1021/am400590m
11.
Singh
,
R.
, and
Lillard
,
J. W.
, Jr
,
2009
, “
Nanoparticle-Based Targeted Drug Delivery
,”
Exp. Mol. Pathol.
,
86
(
3
), pp.
215
223
.10.1016/j.yexmp.2008.12.004
12.
Goodman
,
A. M.
,
Hogan
,
N. J.
,
Gottheim
,
S.
,
Li
,
C.
,
Clare
,
S. E.
, and
Halas
,
N. J.
,
2017
, “
Understanding Resonant Light-Triggered DNA Release From Plasmonic Nanoparticles
,”
ACS Nano
,
11
(
1
), pp.
171
179
.10.1021/acsnano.6b06510
13.
Kang
,
H.
,
Lee
,
G.-H.
,
Jung
,
H.
,
Lee
,
J. W.
, and
Nam
,
Y.
,
2018
, “
Inkjet-Printed Biofunctional Thermo-Plasmonic Interfaces for Patterned Neuromodulation
,”
ACS Nano
,
12
(
2
), pp.
1128
1138
.10.1021/acsnano.7b06617
14.
Fraire
,
J. C.
,
Masseroni
,
M. L.
,
Jausoro
,
I.
,
Perassi
,
E. M.
,
Diaz Anel
,
A. M.
, and
Coronado
,
E. A.
,
2014
, “
Identification, Localization, and Quantification of Neuronal Cell Membrane Receptors With Plasmonic Probes: Role of Protein Kinase D1 in Their Distribution
,”
ACS Nano
,
8
(
9
), pp.
8942
8958
.10.1021/nn501575c
15.
Li
,
W.
, and
Chen
,
X.
,
2015
, “
Gold Nanoparticles for Photoacoustic Imaging
,”
Nanomed. J.
,
10
(
2
), pp.
299
320
.10.2217/nnm.14.169
16.
Mantri
,
Y.
, and
Jokerst
,
J. V.
,
2020
, “
Engineering Plasmonic Nanoparticles for Enhanced Photoacoustic Imaging
,”
ACS Nano
,
14
(
8
), pp.
9408
9422
.10.1021/acsnano.0c05215
17.
Boyer
,
D.
,
Tamarat
,
P.
,
Maali
,
A.
,
Lounis
,
B.
, and
Orrit
,
M.
,
2002
, “
Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers
,”
Science
,
297
(
5584
), pp.
1160
1163
.10.1126/science.1073765
18.
Russier
,
J.
,
Oudjedi
,
L.
,
Piponnier
,
M.
,
Bussy
,
C.
,
Prato
,
M.
,
Kostarelos
,
K.
,
Lounis
,
B.
,
Bianco
,
A.
, and
Cognet
,
L.
,
2017
, “
Direct Visualization of Carbon Nanotube Degradation in Primary Cells by Photothermal Imaging
,”
Nanoscale
,
9
(
14
), pp.
4642
4645
.10.1039/C6NR09795B
19.
Mateo
,
D.
,
Morlanes
,
N.
,
Maity
,
P.
,
Shterk
,
G.
,
Mohammed
,
O. F.
, and
Gascon
,
J.
,
2021
, “
Efficient Visible-Light Driven Photothermal Conversion of CO2 to Methane by Nickel Nanoparticles Supported on Barium Titanate
,”
Adv. Funct. Mater.
,
31
(
8
), p.
2008244
.10.1002/adfm.202008244
20.
Zhu
,
L.
,
Gao
,
M.
,
Peh
,
C. K. N.
, and
Ho
,
G. W.
,
2018
, “
Solar-Driven Photothermal Nanostructured Materials Designs and Prerequisites for Evaporation and Catalysis Applications
,”
Mater. Horiz.
,
5
(
3
), pp.
323
343
.10.1039/C7MH01064H
21.
Adleman
,
J. R.
,
Boyd
,
D. A.
,
Goodwin
,
D. G.
, and
Psaltis
,
D.
,
2009
, “
Heterogeneous Catalysis Mediated by Plasmon Heating
,”
Nano Lett.
,
9
(
12
), pp.
4417
4423
.10.1021/nl902711n
22.
Mornet
,
S.
,
Vasseur
,
S.
,
Grasset
,
F.
,
Veverka
,
P.
,
Goglio
,
G.
,
Demourgues
,
A.
,
Portier
,
J.
,
Pollert
,
E.
, and
Duguet
,
E.
,
2006
, “
Magnetic Nanoparticle Design for Medical Applications
,”
Prog. Solid State Chem.
,
34
(
2–4
), pp.
237
247
.10.1016/j.progsolidstchem.2005.11.010
23.
Xiaohua
,
F.
,
Fei
,
G.
, and
Yuanjin
,
Z.
,
2015
, “
Photoacoustic-Based-Close-Loop Temperature Control for Nanoparticle Hyperthermia
,”
IEEE Trans. Biomed. Eng.
,
62
(
7
), pp.
1728
1737
.10.1109/TBME.2015.2403276
24.
Nelidova
,
D.
,
Morikawa
,
R. K.
,
Cowan
,
C. S.
,
Raics
,
Z.
,
Goldblum
,
D.
,
Scholl
,
H. P.
,
Szikra
,
T.
,
Szabo
,
A.
,
Hillier
,
D.
, and
Roska
,
B.
,
2020
, “
Restoring Light Sensitivity Using Tunable Near-Infrared Sensors
,”
Science
,
368
(
6495
), pp.
1108
1113
.10.1126/science.aaz5887
25.
Yao
,
J.
,
Liu
,
B.
, and
Qin
,
F.
,
2010
, “
Kinetic and Energetic Analysis of Thermally Activated TRPV1 Channels
,”
Biophys. J.
,
99
(
6
), pp.
1743
1753
.10.1016/j.bpj.2010.07.022
26.
Castillo
,
K.
,
Diaz-Franulic
,
I.
,
Canan
,
J.
,
Gonzalez-Nilo
,
F.
, and
Latorre
,
R.
,
2018
, “
Thermally Activated TRP Channels: Molecular Sensors for Temperature Detection
,”
Phys. Biol.
,
15
(
2
), p.
021001
.10.1088/1478-3975/aa9a6f
27.
Brown
,
W. G.
,
Needham
,
K.
,
Begeng
,
J. M.
,
Thompson
,
A. C.
,
Nayagam
,
B. A.
,
Kameneva
,
T.
, and
Stoddart
,
P. R.
,
2020
, “
Thermal Damage Threshold of Neurons During Infrared Stimulation
,”
Biomed. Opt. Exp.
,
11
(
4
), pp.
2224
2234
.10.1364/BOE.383165
28.
Kang
,
P.
,
Chen
,
Z.
,
Nielsen
,
S. O.
,
Hoyt
,
K.
,
D'Arcy
,
S.
,
Gassensmith
,
J. J.
, and
Qin
,
Z.
,
2017
, “
Molecular Hyperthermia: Spatiotemporal Protein Unfolding and Inactivation by Nanosecond Plasmonic Heating
,”
Small
,
13
(
36
), p.
1700841
.10.1002/smll.201700841
29.
Kang
,
P.
,
Li
,
X.
,
Liu
,
Y.
,
Shiers
,
S. I.
,
Xiong
,
H.
,
Giannotta
,
M.
,
Dejana
,
E.
,
Price
,
T. J.
,
Randrianalisoa
,
J.
,
Nielsen
,
S. O.
, and
Qin
,
Z.
,
2019
, “
Transient Photoinactivation of Cell Membrane Protein Activity Without Genetic Modification by Molecular Hyperthermia
,”
ACS Nano
,
13
(
11
), pp.
12487
12499
.10.1021/acsnano.9b01993
30.
Kang
,
P.
,
Xie
,
C.
,
Fall
,
O.
,
Randrianalisoa
,
J.
, and
Qin
,
Z.
,
2021
, “
Computational Investigation of Protein Photoinactivation by Molecular Hyperthermia
,”
ASME J. Biomech. Eng.
,
143
(
3
), p.
031004
.10.1115/1.4049017
31.
Goldenberg
,
H.
, and
Tranter
,
C.
,
1952
, “
Heat Flow in an Infinite Medium Heated by a Sphere
,”
Br. J. Appl. Phys.
,
3
(
9
), pp.
296
298
.10.1088/0508-3443/3/9/307
32.
Hastman
,
D. A.
,
Melinger
,
J. S.
,
Aragonés
,
G. L.
,
Cunningham
,
P. D.
,
Chiriboga
,
M.
,
Salvato
,
Z. J.
,
Salvato
,
T. M.
,
Brown
,
C. W.
,
Mathur
,
D.
,
Medintz
,
I. L.
,
Oh
,
E.
, and
Díaz
,
S. A.
,
2020
, “
Femtosecond Laser Pulse Excitation of DNA-Labeled Gold Nanoparticles: Establishing a Quantitative Local Nanothermometer for Biological Applications
,”
ACS Nano
,
14
(
7
), pp.
8570
8583
.10.1021/acsnano.0c02899
33.
Nguyen
,
S. C.
,
Zhang
,
Q.
,
Manthiram
,
K.
,
Ye
,
X.
,
Lomont
,
J. P.
,
Harris
,
C. B.
,
Weller
,
H.
, and
Alivisatos
,
A. P.
,
2016
, “
Study of Heat Transfer Dynamics From Gold Nanorods to the Environment Via Time-Resolved Infrared Spectroscopy
,”
ACS Nano
,
10
(
2
), pp.
2144
2151
.10.1021/acsnano.5b06623
34.
Gerasimov
,
V.
,
Ershov
,
A.
,
Karpov
,
S.
,
Polyutov
,
S.
, and
Semina
,
P.
,
2016
, “
Optimization of Photothermal Methods for Laser Hyperthermia of Malignant Cells Using Bioconjugates of Gold Nanoparticles
,”
Colloid J.
,
78
(
4
), pp.
435
442
.10.1134/S1061933X16040050
35.
Baffou
,
G.
, and
Rigneault
,
H.
,
2011
, “
Femtosecond-Pulsed Optical Heating of Gold Nanoparticles
,”
Phys. Rev. B
,
84
(
3
), p.
035415
.10.1103/PhysRevB.84.035415
36.
Khlebtsov
,
B.
,
Zharov
,
V.
,
Melnikov
,
A.
,
Tuchin
,
V.
, and
Khlebtsov
,
N.
,
2006
, “
Optical Amplification of Photothermal Therapy With Gold Nanoparticles and Nanoclusters
,”
Nanotechnology
,
17
(
20
), pp.
5167
5179
.10.1088/0957-4484/17/20/022
37.
Guler
,
U.
,
Ndukaife
,
J. C.
,
Naik
,
G. V.
,
Nnanna
,
A. A.
,
Kildishev
,
A. V.
,
Shalaev
,
V. M.
, and
Boltasseva
,
A.
,
2013
, “
Local Heating With Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles
,”
Nano Lett.
,
13
(
12
), pp.
6078
6083
.10.1021/nl4033457
38.
Yan
,
X.
,
Liu
,
G.
,
Xu
,
J.
, and
Wang
,
S.
,
2018
, “
Plasmon Heating of One-Dimensional Gold Nanoparticle Chains
,”
J. Sol. Energy
,
173
, pp.
665
674
.10.1016/j.solener.2018.08.003
39.
Nemec
,
S.
,
Kralj
,
S.
,
Wilhelm
,
C.
,
Abou-Hassan
,
A.
,
Rols
,
M.-P.
, and
Kolosnjaj-Tabi
,
J.
,
2020
, “
Comparison of Iron Oxide Nanoparticles in Photothermia and Magnetic Hyperthermia: Effects of Clustering and Silica Encapsulation on Nanoparticles' Heating Yield
,”
Appl. Sci.
,
10
(
20
), p.
7322
.10.3390/app10207322
40.
Govorov
,
A. O.
,
Zhang
,
W.
,
Skeini
,
T.
,
Richardson
,
H.
,
Lee
,
J.
, and
Kotov
,
N. A.
,
2006
, “
Gold Nanoparticle Ensembles as Heaters and Actuators: Melting and Collective Plasmon Resonances
,”
Nanoscale Res. Lett.
,
1
(
1
), pp.
84
90
.10.1007/s11671-006-9015-7
41.
Baffou
,
G.
,
Quidant
,
R.
, and
Girard
,
C.
,
2009
, “
Heat Generation in Plasmonic Nanostructures: Influence of Morphology
,”
Appl. Phys. Lett.
,
94
(
15
), p.
153109
.10.1063/1.3116645
42.
Keblinski
,
P.
,
Cahill
,
D. G.
,
Bodapati
,
A.
,
Sullivan
,
C. R.
, and
Taton
,
T. A.
,
2006
, “
Limits of Localized Heating by Electromagnetically Excited Nanoparticles
,”
J. Appl. Phys.
,
100
(
5
), p.
054305
.10.1063/1.2335783
43.
Baffou
,
G.
,
Quidant
,
R.
, and
Girard
,
C.
,
2010
, “
Thermoplasmonics Modeling: A Green's Function Approach
,”
Phys. Rev. B
,
82
(
16
), p.
165424
.10.1103/PhysRevB.82.165424
44.
Baffou
,
G.
,
Berto
,
P.
,
Bermudez Urena
,
E.
,
Quidant
,
R.
,
Monneret
,
S.
,
Polleux
,
J.
, and
Rigneault
,
H.
,
2013
, “
Photoinduced Heating of Nanoparticle Arrays
,”
ACS Nano
,
7
(
8
), pp.
6478
6488
.10.1021/nn401924n
45.
Tay
,
Z. W.
,
Chandrasekharan
,
P.
,
Chiu-Lam
,
A.
,
Hensley
,
D. W.
,
Dhavalikar
,
R.
,
Zhou
,
X. Y.
,
Yu
,
E. Y.
,
Goodwill
,
P. W.
,
Zheng
,
B.
,
Rinaldi
,
C.
, and
Conolly
,
S. M.
,
2018
, “
Magnetic Particle Imaging-Guided Heating In Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy
,”
ACS Nano
,
12
(
4
), pp.
3699
3713
.10.1021/acsnano.8b00893
46.
Jauffred
,
L.
,
Samadi
,
A.
,
Klingberg
,
H.
,
Bendix
,
P. M.
, and
Oddershede
,
L. B.
,
2019
, “
Plasmonic Heating of Nanostructures
,”
Chem. Rev.
,
119
(
13
), pp.
8087
8130
.10.1021/acs.chemrev.8b00738
47.
Qin
,
Z.
,
Etheridge
,
M.
, and
Bischof
,
J. C.
, “
Nanoparticle Heating: Nanoscale to Bulk Effects of Electromagnetically Heated Iron Oxide and Gold for Biomedical Applications
,”
Proceedings of Energy-Based Treatment Tissue and Assessment VI, International Society for Optical Photonics
,
7901
, San Francisco, CA, Feb. 23, p.
79010C
.
48.
Kaczmarek
,
K.
,
Hornowski
,
T.
,
Antal
,
I.
,
Timko
,
M.
, and
Józefczak
,
A.
,
2019
, “
Magneto-Ultrasonic Heating With Nanoparticles
,”
J. Magn. Magn. Mater.
,
474
, pp.
400
405
.10.1016/j.jmmm.2018.11.062
49.
González
,
Á.
,
2010
, “
Measurement of Areas on a Sphere Using Fibonacci and Latitude–Longitude Lattices
,”
Math. Geosci.
,
42
(
1
), pp.
49
64
.10.1007/s11004-009-9257-x
50.
Chen
,
Z.
,
Shan
,
X.
,
Guan
,
Y.
,
Wang
,
S.
,
Zhu
,
J. J.
, and
Tao
,
N.
,
2015
, “
Imaging Local Heating and Thermal Diffusion of Nanomaterials With Plasmonic Thermal Microscopy
,”
ACS Nano
,
9
(
12
), pp.
11574
11581
.10.1021/acsnano.5b05306
You do not currently have access to this content.