Abstract

The Fourier and the hyperbolic heat conduction equations were solved numerically to simulate a frequency-domain thermoreflectance (FDTR) experiment. Numerical solutions enable isolation of pump and probe laser spot size effects and use of realistic boundary conditions. The equations were solved in time domain and the phase lag between the temperature of the transducer (averaged over the probe laser spot) and the modulated pump laser signal was computed for a modulation frequency range of 200 kHz–200 MHz. Numerical calculations showed that extracted values of the thermal conductivity are sensitive to both the pump and probe laser spot sizes, while analytical solutions (based on Hankel transform) cannot isolate the two effects. However, for the same effective (combined) spot size, the two solutions are found to be in excellent agreement. If the substrate (computational domain) is sufficiently large, the far-field boundary conditions were found to have no effect on the computed phase lag. The interface conductance between the transducer and the substrate was found to have some effect on the extracted thermal conductivity. The hyperbolic heat conduction equation yielded almost the same results as the Fourier heat conduction equation for the particular case studied. The numerically extracted thermal conductivity value (best fit) for the silicon substrate considered in this study was found to be about 82–108 W/m/K, depending on the pump and probe laser spot sizes used.

References

1.
Cahill
,
D. G.
,
2004
, “
Analysis of Heat Flow in Layered Structures for Time Domain Thermo-Reflectance
,”
Rev. Sci. Instrum.
,
75
, p.
5119
.10.1063/1.1819431
2.
Regner
,
K. T.
,
Sellan
,
D. P.
,
Su
,
Z.
,
Amon
,
C. H.
,
McGaughey
,
A. J. H.
, and
Malen
,
J. A.
,
2013
, “
Broadband Phonon Mean Free Path Contributions to Thermal Conductivity to Thermal Conductivity Measured Using Frequency Domain Thermoreflectance
,”
Nat. Commun.
,
4
, p.
1640
.10.1038/ncomms2630
3.
Minnich
,
A. J.
,
Johnson
,
J. A.
,
Schmidt
,
A. J.
,
Esfarjani
,
K.
,
Dresselhaus
,
M. S.
,
Nelson
,
K. A.
, and
Chen
,
G.
,
2011
, “
Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths
,”
Phys. Rev. Lett.
,
107
, p.
095901
.10.1103/PhysRevLett.107.095901
4.
Feldman
,
A.
,
1999
, “
Algorithm for Solutions of the Thermal Diffusion Equation in a Stratified Medium With a Modulated Heating Source
,”
High Temp. High Press.
,
31
, pp.
293
298
.10.1068/htrt171
5.
Koh
,
Y. K.
, and
Cahill
,
D. G.
,
2007
, “
Frequency Dependence of the Thermal Conductivity of Semiconductor Alloys
,”
Phys. Rev. B
,
76
, p.
075207
.10.1103/PhysRevB.76.075207
6.
Minnich
,
A. J.
,
2012
, “
Determining Phonon Mean Free Paths From Observations of Quasiballistic Thermal Transport
,”
Phys. Rev. Lett.
,
109
, p.
205901
.10.1103/PhysRevLett.109.205901
7.
Hua
,
C.
, and
Minnich
,
A. J.
,
2014
, “
Transport Regimes in Quasiballistic Heat Conduction
,”
Phys. Rev. B
,
89
, p.
094302
.10.1103/PhysRevB.89.094302
8.
Tien
,
C. L.
,
Majumdar
,
A.
, and
Gerner
,
F. M.
, eds.,
1998
,
Microscale Energy Transport
,
Taylor and Francis
,
Washington, DC
.
9.
Zhang
,
Z.
,
2007
,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
.
10.
Ramu
,
A. T.
, and
Bowers
,
J. E.
,
2015
, “
A Compact Heat Transfer Model Based on an Enhanced Fourier Law for Analysis of Frequency Domain Thermoreflectance Experiments
,”
Appl. Phys. Lett.
,
106
, p.
263102
.10.1063/1.4923310
11.
Ma
,
Y.
,
2014
, “
A Two-Parameter Nondiffusive Heat Conduction Model for Data Analysis in Pump–Probe Experiments
,”
J. Appl. Phys.
,
116
, p.
243505
.10.1063/1.4904355
12.
Chen
,
G.
,
2001
, “
Ballistic-Diffusive Heat-Conduction Equations
,”
Phys. Rev. Lett.
,
86
(
11
), pp.
2297
2300
.10.1103/PhysRevLett.86.2297
13.
Mittal
,
A.
, and
Mazumder
,
S.
,
2011
, “
Generalized Ballistic-Diffusive Formulation and Hybrid SN-PN Solution of the Boltzmann Transport Equation for Phonons for Non-Equilibrium Heat Conduction
,”
ASME J Heat Transfer-Trans. ASME
,
133
(
9
), p.
092402
.10.1115/1.4003961
14.
Mittal
,
A.
, and
Mazumder
,
S.
,
2011
, “
Hybrid Discrete Ordinates—Spherical Harmonics Solution to the Boltzmann Transport Equation for Phonons for Non-Equilibrium Heat Conduction
,”
J. Comput. Phys.
,
230
(
18
), pp.
6977
7001
.10.1016/j.jcp.2011.05.024
15.
Hua
,
C.
,
Lindsay
,
L.
,
Chen
,
X.
, and
Minnich
,
A. J.
,
2019
, “
Generalized Fourier's Law for Nondiffusive Thermal Transport: Theory and Experiment
,”
Phys. Rev. B
,
100
, p.
085203
.10.1103/PhysRevB.100.085203
16.
Romano
,
G.
,
Kolpak
,
A. M.
,
Carrete
,
J.
, and
Broido
,
D.
,
2019
, “
Parameter-Free Model to Estimate Thermal Conductivity in Nanostructured Materials
,”
Phys. Rev. B
,
100
, p.
045310
.10.1103/PhysRevB.100.045310
17.
Torres
,
P.
,
Ziabari
,
A.
,
Torelló
,
A.
,
Bafaluy
,
J.
,
Camacho
,
J.
,
Cartoixà
,
X.
,
Shakouri
,
A.
, and
Alvarez
,
F. X.
,
2018
, “
Emergence of Hydrodynamic Heat Transport in Semiconductors at the Nanoscale
,”
Phys. Rev. Mater.
,
2
, p.
076001
.10.1103/PhysRevMaterials.2.076001
18.
Beardo
,
A.
,
Hennessy
,
M. G.
,
Sendra
,
L.
,
Camacho
,
J.
,
Myers
,
T. G.
,
Bafaluy
,
J.
, and
Alvarez
,
F. X.
,
2020
, “
Phonon Hydrodynamics in Frequency-Domain Thermoreflectance Experiments
,”
Phys. Rev. B
,
101
, p.
075303
.10.1103/PhysRevB.101.075303
19.
Ali
,
S. A.
, and
Mazumder
,
S.
,
2017
, “
Phonon Boltzmann Transport Equation Based Modeling of Time Domain Thermo-Reflectance Experiments
,”
Int. J. Heat Mass Transfer
,
107
, pp.
607
621
.10.1016/j.ijheatmasstransfer.2016.11.077
20.
Xing
,
C.
,
Jensen
,
C.
,
Hua
,
Z.
,
Ban
,
H.
,
Hurley
,
D. H.
,
Khafizov
,
M.
, and
Kennedy
,
J. R.
,
2012
, “
Parametric Study of the Frequency-Domain Thermoreflectance Technique
,”
J. Appl. Phys.
,
112
, p.
103105
.10.1063/1.4761977
21.
Braun
,
J. L.
, and
Hopkins
,
P. E.
,
2017
, “
Upper Limit to the Thermal Penetration Depth During Modulated Heating of Multilayer Thin Films With Pulsed and Continuous Wave Lasers: A Numerical Study
,”
J. Appl. Phys.
,
121
, p.
175107
.10.1063/1.4982915
22.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
, 2nd ed.,
Oxford University Press
,
London
, UK.
23.
Mazumder
,
S.
,
2016
,
Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods
, 1st ed.,
Academic Press
,
New York
.
24.
Feser
,
J. P.
, and
Cahill
,
D. G.
,
2012
, “
Probing Anisotropic Heat Transport Using Time-Domain Thermoreflectance
,”
Rev. Sci. Instrum.
,
83
, p.
104901
.10.1063/1.4757863
25.
Wilson
,
R. B.
,
Fesser
,
J. P.
,
Hohensee
,
G. T.
, and
Cahill
,
D. G.
,
2013
, “
Two-Channel Model for Nonequilibrium Thermal Transport in Pump-Probe Experiments
,”
Phys. Rev. B
,
88
, p.
144305
.10.1103/PhysRevB.88.144305
26.
Regner
,
K. T.
,
Wei
,
L. C.
, and
Malen
,
J. A.
,
2015
, “
Interpretation of Thermoreflectance Measurements With a Two-Temperature Model Including Non-Surface Heat Deposition
,”
J. Appl. Phys.
,
118
, p.
235101
.10.1063/1.4937995
27.
Allu
,
P.
, and
Mazumder
,
S.
,
2018
, “
Comparative Assessment of Deterministic Approaches to Modeling Quasiballistic Phonon Heat Conduction in Multi-Dimensional Geometry
,”
Int. J. Therm. Sci.
,
127
, pp.
181
193
.10.1016/j.ijthermalsci.2018.01.024
28.
Mazumder
,
S.
, and
Majumdar
,
A.
,
2001
, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J Heat Transfer-Trans. ASME
,
123
, pp.
749
759
.10.1115/1.1377018
29.
Holland
,
M. G.
,
1963
, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
,
132
(
6
), pp.
2461
2471
.10.1103/PhysRev.132.2461
30.
Holland
,
M. G.
,
1964
, “
Phonon Scattering in Semiconductors From Thermal Conductivity Studies
,”
Phys. Rev.
,
134
(
2A
), pp.
A471
A480
.10.1103/PhysRev.134.A471
You do not currently have access to this content.