Abstract

The maintenance of uniform temperature distribution affects the efficiency in most industrial applications. In this study, a novel strategy has been developed for inverse radiative boundary design problems in radiant enclosures with participating medium. This study presents the Backward Monte Carlo method to investigate the inverse boundary design of an enclosure composed of specular and diffuse surfaces. A new optimized Monte Carlo method is proposed to determine the temperature distribution of heaters to achieve desirable prescribed uniform heat flux on the design surfaces. The proposed approach is highly efficient and simple to implement with appropriate results. The evaluated heat fluxes on design surfaces and temperature distribution of heaters are compared with the case where the reradiating walls are assumed to be perfectly diffuse. In the proposed approach, for a specific range of specularity, the absorptivity of the reradiating surfaces does not affect the temperature distribution of heaters. Compared to the diffuse walls, the specular walls have a more uniform temperature distribution and heat flux of heaters. This finding will provide insight into solar furnaces design to enhance temperature uniformity, making specular surfaces suitable in many industrial applications.

References

1.
Li, B. X., Yu, X. J., and Liu, L. H., 2005, “Backward Monte Carlo Simulation for Apparent Directional Emissivity of Non-Isothermal Semitransparent Slab,”
J. Quant. Spectrosc. Radiat. Transfer
, 91(2), pp. 173–179.1016/j.jqsrt.2004.05.055
2.
Franc
,
F. H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2001
, “
Inverse Boundary Design Combining Radiation and Convection Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
5
), pp.
884
891
.10.1115/1.1388298
3.
Zisik
,
M. N. O.
, and
Orlande
,
H. R. B.
,
2000
,
Inverse Heat Transfer: Fundamentals and Applications
,
Taylor & Francis
,
New York
.
4.
ErtüRk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2002
, “
The Application of an Inverse Formulation in the Design of Boundary Conditions for Transient Radiating Enclosures
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
6
), pp.
1095
1102
.10.1115/1.1513574
5.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
,
Academic Press
, New York.
6.
Ho
,
C. H.
, and
Özişik
,
M.
,
1988
, “
Inverse Radiation Problems in Inhomogeneous Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
40
(
5
), pp.
553
560
.10.1016/0022-4073(88)90135-5
7.
Pourshaghaghy
,
A.
,
Pooladvand
,
K.
,
Kowsary
,
F.
, and
Karimi-Zand
,
K.
,
2006
, “
An Inverse Radiation Boundary Design Problem for an Enclosure Filled With an Emitting, Absorbing, and Scattering Media
,”
J. Int. Commun. Heat Mass Transfer
,
33
(
3
), pp.
381
390
.10.1016/j.icheatmasstransfer.2005.12.007
8.
Kowsary
,
F.
,
Pooladvand
,
K.
, and
Pourshaghaghy
,
A.
,
2007
, “
Regularized Variable Metric Method Versus the Conjugate Gradient Method in Solution of Radiative Boundary Design Problem
,”
J. Quant. Spectrosc. Radiat. Transfer
,
108
(
2
), pp.
277
294
.10.1016/j.jqsrt.2007.03.007
9.
Huang
,
C.
,
Wang
,
L.
,
Fu
,
M.
,
Lu
,
Z. R.
, and
Chen
,
Y. A.
,
2020
, “
Novel Iterative Integration Regularization Method for Ill-Posed Inverse Problems
,”
J. Eng. Comput.
,
37
, pp. 1921–1941.
10.
Sarvari
,
S. H.
,
2005
, “
Inverse Determination of Heat Source Distribution in Conductive–Radiative Media With Irregular Geometry
,”
J. Quant. Spectrosc. Radiat. Transfer
,
93
(
1–3
), pp.
383
395
.10.1016/j.jqsrt.2004.08.031
11.
Daun
,
K.
,
FrançA
,
F.
,
Larsen
,
M.
,
Leduc
,
G.
, and
Howell
,
J. R.
,
2006
, “
Comparison of Methods for Inverse Design of Radiant Enclosures
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
3
), pp.
269
282
.10.1115/1.2151198
12.
Namjoo
,
A.
,
Sarvari
,
S. H.
,
Behzadmehr
,
A.
, and
Mansouri
,
S.
,
2009
, “
Inverse Radiation Problem of Temperature Distribution in One-Dimensional Isotropically Scattering Participating Slab With Variable Refractive Index
,”
J. Quant. Spectrosc. Radiat. Transfer
,
110
(
8
), pp.
491
505
.10.1016/j.jqsrt.2009.01.034
13.
Salinas
,
C. T.
,
2010
, “
Inverse Radiation Analysis in Two-Dimensional Gray Media Using the Discrete Ordinates Method With a Multidimensional Scheme
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
302
310
.10.1016/j.ijthermalsci.2009.08.003
14.
Bayat
,
N.
,
Mehraban
,
S.
, and
Sarvari
,
S. H.
,
2010
, “
Inverse Boundary Design of a Radiant Furnace With Diffuse-Spectral Design Surface
,”
J. Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
103
110
.10.1016/j.icheatmasstransfer.2009.07.005
15.
Radfar
,
N.
,
Amiri
,
H.
, and
Arabsolghar
,
A.
,
2019
, “
Application of Metaheuristic Algorithms for Solving Inverse Radiative Boundary Design Problems With Discrete Power Levels
,”
Int. J. Therm. Sci.
,
137
, pp.
539
551
.10.1016/j.ijthermalsci.2018.12.014
16.
Yadav
,
R.
,
Balaji
,
C.
, and
Venkateshan
,
S.
,
2019
, “
Inverse Estimation of Number and Location of Discrete Heaters in Radiant Furnaces Using Artificial Neural Networks and Genetic Algorithm
,”
J. Quant. Spectrosc. Radiat. Transfer
,
226
, pp.
127
137
.10.1016/j.jqsrt.2018.12.031
17.
Mosavati
,
B.
,
Mosavati
,
M.
, and
Kowsary
,
F.
,
2013
, “
Solution of Radiative Inverse Boundary Design Problem in a Combined Radiating-Free Convecting Furnace
,”
J. Int. Commun. Heat Mass Transfer
,
45
, pp.
130
136
.10.1016/j.icheatmasstransfer.2013.04.011
18.
Mosavati
,
B.
,
Mosavati
,
M.
, and
Kowsary
,
F.
,
2016
, “
Inverse Boundary Design Solution in a Combined Radiating-Free Convecting Furnace Filled With Participating Medium Containing Specularly Reflecting Walls
,”
J. Int. Commun. Heat Mass Transfer
,
76
, pp.
69
76
.10.1016/j.icheatmasstransfer.2016.04.029
19.
Lemos
,
L. D.
,
Brittes
,
R.
, and
França
,
F. H.
,
2016
, “
Application of Inverse Analysis to Determine the Geometric Configuration of Filament Heaters for Uniform Heating
,”
Int. J. Therm. Sci.
,
105
, pp.
1
12
.10.1016/j.ijthermalsci.2016.02.015
20.
Daun
,
K.
,
Morton
,
D.
, and
Howell
,
J.
,
2003
, “
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces
,”
ASME J. Heat Transfer-Trans. ASME
,
125
(
5
), pp.
845
851
.10.1115/1.1599369
21.
Kiefer
,
J.
, and
Wolfowitz
,
J.
,
1952
, “
Stochastic Estimation of the Maximum of a Regression Function
,”
Ann. Math. Stat.
,
23
(
3
), pp.
462
466
.10.1214/aoms/1177729392
22.
Zhou
,
W.
, and
Qiu
,
T.
,
2015
, “
Zone Modeling of Radiative Heat Transfer in Industrial Furnaces Using Adjusted Monte Carlo Integral Method for Direct Exchange Area Calculation
,”
Appl. Therm. Eng.
,
81
, pp.
161
167
.10.1016/j.applthermaleng.2015.02.004
23.
Yi
,
H. L.
,
Wang
,
C. H.
, and
Tan
,
H. P.
,
2014
, “
Transient Radiative Transfer in a Complex Refracting Medium by a Modified Monte Carlo Simulation
,”
Int. J. Heat Mass Transfer
,
79
, pp.
437
449
.10.1016/j.ijheatmasstransfer.2014.08.031
24.
Mulford
,
R. B.
,
Collins
,
N. S.
,
Farnsworth
,
M. S.
,
Jones
,
M. R.
, and
Iverson
,
B. D.
,
2018
, “
Total Hemispherical Apparent Radiative Properties of the Infinite V-Groove With Specular Reflection
,”
Int. J. Heat Mass Transfer
,
124
, pp.
168
176
.10.1016/j.ijheatmasstransfer.2018.03.041
25.
Yi
,
H. L.
,
Zhen
,
B.
,
Tan
,
H. P.
, and
Tong
,
T. W.
,
2009
, “
Radiative Heat Transfer in a Participating Medium With Specular–Diffuse Surfaces
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4229
4235
.10.1016/j.ijheatmasstransfer.2009.04.009
26.
Safavinejad
,
A.
,
Mansouri
,
S.
,
Sakurai
,
A.
, and
Maruyama
,
S.
,
2009
, “
Optimal Number and Location of Heaters in 2-D Radiant Enclosures Composed of Specular and Diffuse Surfaces Using Micro-Genetic Algorithm
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
1075
1085
.10.1016/j.applthermaleng.2008.05.025
27.
Marston
,
A.
,
Daun
,
K.
, and
Collins
,
M.
,
2010
, “
Geometric Optimization of Concentrating Solar Collectors Using Monte Carlo Simulation
,”
J. Sol. Energy Eng.
,
132
(
4
), pp.
81
97
.
28.
Mosavati
,
M.
,
Kowsary
,
F.
, and
Mosavati
,
B.
,
2013
, “
A Novel, Noniterative Inverse Boundary Design Regularized Solution Technique Using the Backward Monte Carlo Method
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
4
), p. 042701.10.1115/1.4022994
29.
Modest
,
M. F.
,
2003
, “
Backward Monte Carlo Simulations in Radiative Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
125
(
1
), pp.
57
62
.10.1115/1.1518491
30.
Walters
,
D. V.
, and
Buckius
,
R. O.
,
1994
, “
Monte Carlo Methods for Radiative Heat Transfer in Scattering Media
,”
Annu. Rev. Heat Transfer
,
5
(
50
), pp.
131
176
.10.1615/AnnualRevHeatTransfer.v5.50
31.
Mahan
,
J. R.
,
2002
,
Radiation Heat Transfer: A Statistical Approach
,
Wiley, New York
.
32.
Howell
,
J. R.
, and
Daun
,
K.
,
2021
, “
The Past and Future of the Monte Carlo Method in Thermal Radiation Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
10
), p.
100801
.10.1115/1.4050719
33.
Ertürk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2002
, “
Comparison of Three Regularized Solution Techniques in a Three-Dimensional Inverse Radiation Problem
,”
J. Quant. Spectrosc. Radiat. Transfer
,
73
(
2–5
), pp.
307
316
.10.1016/S0022-4073(01)00212-6
34.
Tikhonov
,
A. N.
,
Goncharsky
,
A. V.
,
Stepanov
,
V. V.
, and
Yagola
,
A. G.
,
1995
,
Numerical Methods for Solving Ill-Posed Problems
,
Kluwer Academic Publishers
,
Boston, MA
.
You do not currently have access to this content.