Abstract

Modeling of turbulence heat transfer for supercritical fluids, using computational fluid dynamics (CFD) software, is always challenging due to the drastic property variations near the critical point. The use of artificial neural networks (ANNs) along with numerical methods has shown promising results in predicting heat transfer coefficients of heat exchangers. In this study, the accuracy of four different turbulent models available in the commercial CFD software—ansysfluent is investigated against the available experimental results. The k–ε Re-normalization group (RNG) model, with enhanced wall treatment, is found to be the best-suited turbulence model. Further, K–ε RNG turbulence model is used in CFD for parametric analysis to generate the data for ANN studies. A total of 1,34,698 data samples was generated and fed into the ANN program to develop an equation that can predict the heat transfer coefficient. It was found that, for the considered range of values, the absolute average relative deviation is 3.49%.

References

1.
Kruizenga
,
A.
,
Anderson
,
M.
,
Fatima
,
R.
,
Corradini
,
M.
,
Towne
,
A.
, and
Ranjan
,
D.
,
2011
, “
Heat Transfer of Supercritical Carbon Dioxide in Printed Circuit Heat Exchanger Geometries
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
3
), pp.
1
8
.10.1115/1.4004252
2.
Li
,
H.
,
Zhang
,
Y.
,
Zhang
,
L.
,
Yao
,
M.
,
Kruizenga
,
A.
, and
Anderson
,
M.
,
2016
, “
Based Modeling on the Turbulent Convection Heat Transfer of Supercritical CO2 in the Printed Circuit Heat Exchangers for the Supercritical CO2 Brayton Cycle
,”
Int. J. Heat Mass Transfer
,
98
, pp.
204
218
.10.1016/j.ijheatmasstransfer.2016.03.001
3.
Cabeza
,
L. F.
,
de Gracia
,
A.
,
Fernández
,
A. I.
, and
Farid
,
M. M.
,
2017
, “
Supercritical CO2 as Heat Transfer Fluid: A Review
,”
Appl. Thermal Eng.
,
125
, pp.
799
810
.10.1016/j.applthermaleng.2017.07.049
4.
Pioro
,
I. L.
,
Khartabil
,
H. F.
, and
Duffey
,
R. B.
,
2004
, “
Heat Transfer to Supercritical Fluids Flowing in Channels—Empirical Correlations (Survey)
,”
Nucl. Eng. Des.
,
230
(
1–3
), pp.
69
91
.10.1016/j.nucengdes.2003.10.010
5.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.10.1016/j.net.2015.06.009
6.
Hobold
,
G. M.
, and
da Silva
,
A. K.
,
2016
, “
Thermal Behavior of Supercritical Fluids Near the Critical Point
,”
Numer. Heat Transfer, Part A Appl.
,
69
(
6
), pp.
545
557
.10.1080/10407782.2015.1080584
7.
Huang
,
D.
,
Wu
,
Z.
,
Sunden
,
B.
, and
Li
,
W.
,
2016
, “
A Brief Review on Convection Heat Transfer of Fluids at Supercritical Pressures in Tubes and the Recent Progress
,”
Appl. Energy
,
162
, pp.
494
505
.10.1016/j.apenergy.2015.10.080
8.
Zhang
,
Y.
,
Zhang
,
C.
, and
Jiang
,
J.
,
2011
, “
Numerical Simulation of Heat Transfer of Supercritical Fluids in Circular Tubes Using Different Turbulence Models
,”
J. Nucl. Sci. Technol.
,
48
(
3
), pp.
366
373
.10.1080/18811248.2011.9711712
9.
Du
,
Z.
,
Lin
,
W.
, and
Gu
,
A.
,
2010
, “
Numerical Investigation of Cooling Heat Transfer to Supercritical CO2 in a Horizontal Circular Tube
,”
J. Supercrit. Fluids
,
55
(
1
), pp.
116
121
.10.1016/j.supflu.2010.05.023
10.
Wang
,
J.
,
Guo
,
P.
,
Yan
,
J.
,
Zhu
,
F.
, and
Luo
,
X.
,
2019
, “
Experimental Study on Forced Convective Heat Transfer of Supercritical Carbon Dioxide in a Horizontal Circular Tube Under High Heat Flux and Low Mass Flux Conditions
,”
Adv. Mech. Eng.
,
11
(
3
), pp. 1–10.10.1177/1687814019830804
11.
Liao
,
S. M.
, and
Zhao
,
T. S.
,
2002
, “
Measurements of Heat Transfer Coefficients From Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
3
), pp.
413
420
.10.1115/1.1423906
12.
Pitla
,
S. S.
,
Groll
,
E. A.
, and
Ramadhyani
,
S.
,
2001
, “
Convective Heat Transfer From In-Tube Flow of Turbulent Supercritical Carbon Dioxide: Part 1—Numerical Analysis
,”
HVACR Res.
,
7
(
4
), pp.
345
366
.10.1080/10789669.2001.10391280
13.
Zahlan
,
H.
,
Groeneveld
,
D.
, and
Tavoularis
,
S.
,
2015
, “
Measurements of Convective Heat Transfer to Vertical Upward Flows of CO2 in Circular Tubes at Near-Critical and Supercritical Pressures
,”
Nucl. Eng. Des.
,
289
, pp.
92
107
.10.1016/j.nucengdes.2015.04.013
14.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
, pp.
503
564
.10.1016/S0065-2717(08)70153-9
15.
Yamagata
,
K.
,
Nishikawa
,
K.
,
Hasegawa
,
S.
,
Fujii
,
T.
, and
Yoshida
,
S.
,
1972
, “
Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp.
2575
2593
.10.1016/0017-9310(72)90148-2
16.
Chen
,
L.
, and
Zhang
,
X. R.
,
2011
, “
Simulation of Heat Transfer and System Behavior in a Supercritical CO2 Based Thermosyphon: Effect of Pipe Diameter
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
12
), pp.
539
546
.10.1115/1.4004434
17.
Kruizenga
,
A.
,
Li
,
H.
,
Anderson
,
M.
, and
Corradini
,
M.
,
2012
, “
Supercritical Carbon Dioxide Heat Transfer in Horizontal Semicircular Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
8
), pp.
857
854
.10.1115/1.4006108
18.
Dang
,
C.
, and
Hihara
,
E.
,
2004
, “
In-Tube Cooling Heat Transfer of Supercritical Carbon Dioxide. Part 1. Experimental Measurement
,”
Int. J. Refrig.
,
27
(
7
), pp.
736
747
.10.1016/j.ijrefrig.2004.04.018
19.
Ye
,
K.
,
Zhang
,
Y.
,
Yang
,
L.
,
Zhao
,
Y.
,
Li
,
N.
, and
Xie
,
C.
,
2019
, “
Modeling Convective Heat Transfer of Supercritical Carbon Dioxide Using an Artificial Neural Network
,”
Appl. Therm. Eng.
,
150
, pp.
686
695
.10.1016/j.applthermaleng.2018.11.031
20.
Kim
,
D. E.
, and
Kim
,
M. H.
,
2010
, “
Experimental Study of the Effects of Flow Acceleration and Buoyancy on Heat Transfer in a Supercritical Fluid Flow in a Circular Tube
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3336
3349
.10.1016/j.nucengdes.2010.07.002
21.
Bringer
,
R. P.
, and
Smith
,
J. M.
,
1957
, “
Heat Transfer in the Critical Region
,”
AIChE J.
,
3
(
1
), pp.
49
55
.10.1002/aic.690030110
22.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2002
, “
NIST Reference Fluid Thermodynamic and Transport Properties–REFPROP
,”
NIST, Gaithersburg, MD, Standard No.
23
, p.
v7
.
23.
Jackson
,
J. D.
,
Jd
,
J.
, and
Wb
,
H.
,
1979
, “
Forced Convection Heat Transfer to Fluids at Supercritical Pressure
,”
Proc. Inst. Mech. Eng.
,
182
(
Pt 3I
), pp.
1
14
.
24.
Hiroaki
,
T.
,
Niichi
,
N.
,
Masaru
,
H.
, and
Ayao
,
T.
,
1971
, “
Forced Convection Heat Transfer to Fluid Near Critical Point Flowing in Circular Tube
,”
Int. J. Heat Mass Transfer
,
14
(
6
), pp.
739
750
.10.1016/0017-9310(71)90104-9
25.
Miropolsky
,
Z. L.
, and
Baigulov
,
V. I.
,
1974
, “
Investigation in Heat Transfer, Velocity and Temperature Profiles With Carbon Dioxide Flow in a Tube Over the Nearly Critical Region of Parameters
,”
Proceedings of the Fifth International Heat Transfer Conference
, Vol.
II
,
Tokyo, Japan
, Sept. 3–7, Paper No. FC-4.12, pp.
177
181
.10.1115/1.4029592
26.
Bourke
,
P. J.
,
Pulling
,
D. J.
,
Gill
,
L. E.
, and
Denton
,
W. H.
,
1970
, “
Forced Convective Heat Transfer to Turbulent CO2 in the Supercritical Region
,”
Int. J. Heat Mass Transfer
,
13
(
8
), pp.
1339
1348
.10.1016/0017-9310(70)90074-8
27.
Bae
,
Y. Y.
,
Kim
,
H. Y.
, and
Kang
,
D. J.
,
2010
, “
Forced and Mixed Convection Heat Transfer to Supercritical CO2 Vertically Flowing in a Uniformly-Heated Circular Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1295
1308
.10.1016/j.expthermflusci.2010.06.001
You do not currently have access to this content.