Abstract

The development of mathematical models plays a fundamental role in the design, optimization, and control of processes. Regarding heat transfer in moving bed reactors, the chemical reaction implies the inclusion of a nonhomogeneous and nonlinear term in model equations, making the analytical integration a very difficult task. Up to date, there is not an analytic and/or a semi-analytic solution to a heat transfer model of a moving bed reactor (MBR) with isothermal walls to the distributed parameters in the solid phase. Therefore, starting from analytical solutions of the associated homogeneous (linear) problems and through the spectral expansion of the nonhomogeneous vector, this work presents strategies for determining semi-analytical solutions of nonhomogeneous and nonlinear problems. An MBR with a first-order chemical reaction in the solid phase—kaolinite dehydroxylation in the kaolinite flash calcination process—is selected as the case study; however, the strategies can easily be applied to other nonlinear models. Results for conversion, and fluid and particle temperatures, are given for different parameter values. The solutions perform stable, fast, and accurate. When compared with a hybrid finite difference and finite analytic (FD&FA) numerical method, the solution showed a very good agreement.

References

1.
Bertoli
,
S. L.
,
1989
, “
Transferência de Calor Convectiva e Radiante em Leito de Arrasto (Radiant and Convective Heat Transfer in Moving Beds)
,” Master's thesis, COPPE,
Federal University of Rio de Janeiro
,
Rio de Janeiro
.
2.
Bertoli
,
S. L.
,
2000
, “
Radiant and Convective Heat Transfer on Pneumatic Transport of Particles: An Analytical Study
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2345
2363
.10.1016/S0017-9310(99)00280-X
3.
Fan
,
L.-S.
, and
Zhu
,
C.
,
1998
,
Principles of Gas-Solid Flows
,
Cambridge University Press, Cambridge
.
4.
Yang
,
W.
,
Zhou
,
Z.
, and
Yu
,
A.
,
2015
, “
Particle Scale Studies of Heat Transfer in a Moving Bed
,”
Powder Technol.
,
281
, pp.
99
111
.10.1016/j.powtec.2015.04.071
5.
Almendros-Ibáñez
,
J.
,
Soria-Verdugo
,
A.
,
Ruiz-Rivas
,
U.
, and
Santana
,
D.
,
2011
, “
Solid Conduction Effects and Design Criteria in Moving Bed Heat Exchangers
,”
Appl. Therm. Eng.
,
31
(
6–7
), pp.
1200
1207
.10.1016/j.applthermaleng.2010.12.021
6.
Azad
,
F.
, and
Modest
,
M.
,
1981
, “
Combined Radiation and Convection in Absorbing, Emitting and Anisotropically Scattering Gas-Particulate Tube Flow
,”
Int. J. Heat Mass Transfer
,
24
(
10
), pp.
1681
1698
.10.1016/0017-9310(81)90077-6
7.
Adanez
,
J.
, and
Labiano
,
F. G.
,
1990
, “
Modeling of Moving-Bed Coal Gasifiers
,”
Ind. Eng. Chemi. Res.
,
29
(
10
), pp.
2079
2088
.10.1021/ie00106a016
8.
Bertoli
,
S. L.
,
Valle
,
J. A. B.
,
Gerent
,
A. G.
, and
de Almeida
,
J.
,
2012
, “
Heat Transfer at Pneumatic Particle Transport—Limit Solutions
,”
Powder Technol.
,
232
, pp.
64
77
.10.1016/j.powtec.2012.07.050
9.
Bertoli
,
S. L.
,
de Almeida
,
J.
, Jr
,
Decker
,
R. K.
,
Ender
,
L.
,
de Almeida
,
J.
, and
Lovatel
,
A. C.
,
2015
, “
A Numerical Solution of a Model for Heat Transfer in Moving Beds
,”
Chem. Eng. Trans.
,
43
, pp.
1567
1572
.10.3303/CET1543262
10.
Bertoli
,
S. L.
,
de Almeida
,
J.
, Jr
,
Bastos
,
J. C. S. C.
,
da Silva
,
M. K.
,
Pacheco
,
G. J.
, and
Wiggers
,
V. R.
,
2015
, “
Semi Analytical Solution of a Heat Transfer and Kinetic Models Applied in a Biomass Pyrolysis Reactor
,”
Transport and Energy Processes 2015—Core Programming Area at the 2015 AIChE Annual Meeting
, Salt Lake City, Utah, Nov. 11, pp.
102
109
.
11.
Bertoli
,
S. L.
,
de Souza
,
C. K.
,
Bastos
,
J. C.
,
de Almeida
,
J.
,
de Almeida
,
J.
,
Licodiedoff
,
S.
, and
Wiggers
,
V. R.
,
2017
, “
Lumped Parameter Analysis Criteria for Heat Transfer in a Co-Current Moving Bed With Adiabatic Walls
,”
Powder Technol.
,
317
, pp.
381
390
.10.1016/j.powtec.2017.05.018
12.
Bertoli
,
S. L.
,
Tribess
,
R.
,
Castamann
,
V. A.
,
Lovatel
,
A.
, and
de Souza
,
C. K.
,
2019
, “
Analytical Solution of a Heat Transfer Model for a Tubular co-Current Diluted Moving Bed Reactor With Indirect Heating and Intraparticle Gradients
,”
Powder Technol.
,
351
, pp.
259
272
.10.1016/j.powtec.2019.04.001
13.
Bertoli
,
S. L.
,
de Almeida
,
J.
,
de Souza
,
C. K.
,
Lovatel
,
A.
,
Padoin
,
N.
, and
Soares
,
C.
,
2020
, “
Lumped Analysis Criteria for Heat Transfer in a Diluted Co—Current Moving Bed Heat Exchanger With Isothermal Walls
,”
Powder Technol.
,
361
, pp.
1038
1059
.10.1016/j.powtec.2019.10.092
14.
Depew
,
C.
, and
Farbar
,
L.
,
1963
, “
Heat Transfer to Pneumatically Conveyed Glass Particles of Fixed Size
,”
ASME J. Heat Transfer-Trans. ASME
,
85
(
2
), pp.
164
171
.10.1115/1.3686042
15.
El-Behery
,
S. M.
,
El-Askary
,
W.
,
Hamed
,
M. H.
, and
Ibrahim
,
K.
,
2012
, “
Numerical Simulation of Heat and Mass Transfer in Pneumatic Conveying Dryer
,”
Comput. Fluids
,
68
, pp.
159
167
.10.1016/j.compfluid.2012.08.006
16.
Isaza
,
P. A.
,
Cai
,
Y.
,
Warnica
,
W. D.
, and
Bussmann
,
M.
,
2016
, “
Co-Current and Counter-Current Vertical Pipe Moving Bed Heat Exchangers: Analytical Solutions
,”
Int. J. Heat Mass Transfer
,
95
, pp.
1115
1128
.10.1016/j.ijheatmasstransfer.2015.12.043
17.
Lisbôa
,
A. C. L.
,
1987
, “
Transferência de Calor em Leito de Arrasto de Xisto (Heat Transfer in a Moving Bed of Oil Shale)
,” Master's thesis, COPPE,
Federal University of Rio de Janeiro
,
Rio de Janeiro
.
18.
Meier
,
H.
,
Noriler
,
D.
, and
Bertoli
,
S.
,
2009
, “
A Solution for a Heat Transfer Model in a Moving Bed Through the Self-Adjoint Operator Method
,”
Latin Am. Appl. Res.
,
39
(
4
), pp.
327
336
.http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932009000400006
19.
Munro
,
W. D.
, and
Amundson
,
N. R.
,
1950
, “
Solid-Fluid Heat Exchange in Moving Beds
,”
Ind. Eng. Chem.
,
42
(
8
), pp.
1481
1488
.10.1021/ie50488a014
20.
Siegmund
,
C. W.
,
Munro
,
W. D.
, and
Amundson
,
N. R.
,
1956
, “
Two Problems on Moving Beds
,”
Ind. Eng. Chem.
,
48
(
1
), pp.
43
50
.10.1021/ie50553a018
21.
Saastamoinen
,
J.
,
2004
, “
Heat Exchange Between Two Coupled Moving Beds by Fluid Flow
,”
Int. J. Heat Mass Transfer
,
47
(
6–7
), pp.
1535
1547
.10.1016/j.ijheatmasstransfer.2003.10.011
22.
Tien
,
C. L.
,
1961
, “
Heat Transfer by a Turbulently Flowing Fluid-Solids Mixture in a Pipe
,”
ASME J. Heat Transfer-Trans. ASME
,
83
(
2
), pp.
183
188
.10.1115/1.3680514
23.
Denn
,
M. M.
,
1986
,
Process Modeling
,
Longman
,
New York
.
24.
Turkyilmazoglu
,
M.
,
2019
, “
Cooling of Particulate Solids and Fluid in a Moving Bed Heat Exchanger
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
11
), p.
114501
.10.1115/1.4044590
25.
Shirzad
,
M.
,
Karimi
,
M.
,
Silva
,
J. A.
, and
Rodrigues
,
A. E.
,
2019
, “
Moving Bed Reactors: Challenges and Progress of Experimental and Theoretical Studies in a Century of Research
,”
Ind. Eng. Chem. Res.
,
58
(
22
), pp.
9179
9198
.10.1021/acs.iecr.9b01136
26.
Pais
,
L. S.
,
Loureiro
,
J.
, and
Rodrigues
,
A. E.
,
1997
, “
Separation of 1,1'-bi-2-Naphthol Enantiomers by Continuous Chromatography in Simulated Moving Bed
,”
Chem. Eng. Sci.
,
52
(
2
), pp.
245
257
.10.1016/S0009-2509(96)00398-3
27.
Azevedo
,
D. C. S.
, and
Rodrigues
,
A. E.
,
1999
, “
Design of a Simulated Moving Bed in the Presence of Mass-Transfer Resistances
,”
AIChE J.
,
45
(
5
), pp.
956
966
.10.1002/aic.690450506
28.
Minceva
,
M.
,
Silva
,
V. M. T.
, and
Rodrigues
,
A. E.
,
2005
, “
Analytical Solution for Reactive Simulated Moving Bed in the Presence of Mass Transfer Resistance
,”
Ind. Eng. Chem. Res.
,
44
(
14
), pp.
5246
5255
.10.1021/ie049236s
29.
Minceva
,
M.
,
Gomes
,
P. S.
,
Meshko
,
V.
, and
Rodrigues
,
A. E.
,
2008
, “
Simulated Moving Bed Reactor for Isomerization and Separation of p-Xylene
,”
Chem. Eng. J.
,
140
(
1–3
), pp.
305
323
.10.1016/j.cej.2007.09.033
30.
Medeiros
,
L.
,
Bastos
,
J. C. S. C.
,
Krautler
,
M. I. L.
,
de Almeida
,
J.
, Jr
,
Gonçalves
,
M. J.
,
Meier
,
H. F.
, and
Bertoli
,
S. L.
,
2018
, “
Solução Semianalítica de um Modelo de Transferência de Calor em Leito Móvel Com Reação de Primeira Ordem na Fase Sólida
,”
Blucher Chemical Engineering Proceedings
,
Editora Blucher
,
São Paulo
, Brazil, Sept. 2018, pp.
842
845
.
31.
Bertoli
,
S. L.
,
de Almeida
,
J.
, Jr.
,
de Almeida
,
J.
,
Lovatel
,
A. C.
,
Eleoterio
,
A.
,
Schwertl
,
S. L.
, and
Brandt
,
P. R.
,
2016
, “
The Importance of Limit Solutions & Temporal and Spatial Scales in the Teaching of Transport Phenomena
,”
Rev. Ing., Mat. Ciencias Inf.
,
3
(
6
), pp.
13
19
.10.21017/rimci.2016.v3.n6.a10
32.
Arce
,
P.
, and
Ramkrishna
,
D.
,
1986
, “
Self-Adjoint Operators of Transport in Interacting Solid-Fluid Systems
,”
Chem. Eng. Sci.
,
41
(
6
), pp.
1539
1547
.10.1016/0009-2509(86)85236-8
33.
Ramkrishna
,
D.
, and
Arce
,
P.
,
1988
, “
Self-Adjoint Operators of Transport in Interacting Solid-Fluid Systems-II
,”
Chem. Eng. Sci.
,
43
(
4
), pp.
933
944
.10.1016/0009-2509(88)80089-7
34.
de Almeida Jr
,
J.
,
Wiggers
,
V. R.
,
Bastos
,
J. C. S. C.
,
de Souza
,
C. K.
,
Schmitz
,
F. R. W.
, and
Bertoli
,
S. L.
,
2016
, “
Solução Semianalítica Híbrida Para Transferência de Calor Com Reação Química Aplicada a um Reator de Pirólise de Biomassa a Parâmetros Distribuídos
,”
Anais Do Congresso Brasileiro de Engenharia Química
,
Fortaleza, Brazil
.
35.
Teklay
,
A.
,
Yin
,
C.
, and
Rosendahl
,
L.
,
2016
, “
Flash Calcination of Kaolinite Rich Clay and Impact of Process Conditions on the Quality of the Calcines: A Way to Reduce CO2 Footprint From Cement Industry
,”
Appl. Energy
,
162
, pp.
1218
1224
.10.1016/j.apenergy.2015.04.127
36.
Sabir
,
B.
,
Wild
,
S.
, and
Bai
,
J.
,
2001
, “
Metakaolin and Calcined Clays as Pozzolans for Concrete: A Review
,”
Cem. Concrete Compos.
,
23
(
6
), pp.
441
454
.10.1016/S0958-9465(00)00092-5
37.
Sperinck
,
S.
,
Raiteri
,
P.
,
Marks
,
N.
, and
Wright
,
K.
,
2011
, “
Dehydroxylation of Kaolinite to Metakaolin–a Molecular Dynamics Study
,”
J. Mater. Chem.
,
21
(
7
), pp.
2118
2125
.10.1039/C0JM01748E
38.
Salvador
,
S.
,
1995
, “
Pozzolanic Properties of Flash-Calcined Kaolinite: A Comparative Study With Soak-Calcined Products
,”
Cem. Concrete Res.
,
25
(
1
), pp.
102
112
.10.1016/0008-8846(94)00118-I
39.
Bridson
,
D.
,
Davies
,
T. W.
, and
Harrison
,
D. P.
,
1985
, “
Properties of Flash-Calcined Kaolinite
,”
Clays Clay Miner.
,
33
(
3
), pp.
258
260
.10.1346/CCMN.1985.0330313
40.
Slade
,
R. C. T.
,
Davies
,
T. W.
,
Atakül
,
H.
,
Hooper
,
R. M.
, and
Jones
,
D. J.
,
1992
, “
Flash Calcines of Kaolinite: Effect of Process Variables on Physical Characteristics
,”
J. Mater. Sci.
,
27
(
9
), pp.
2490
2500
.10.1007/BF01105062
41.
Teklay
,
A.
,
Yin
,
C.
,
Rosendahl
,
L.
, and
Køhler
,
L. L.
,
2015
, “
Experimental and Modeling Study of Flash Calcination of Kaolinite Rich Clay Particles in a Gas Suspension Calciner
,”
Appl. Clay Sci.
,
103
, pp.
10
19
.10.1016/j.clay.2014.11.003
42.
Teklay
,
A.
,
Yin
,
C.
,
Rosendahl
,
L.
, and
Bøjer
,
M.
,
2014
, “
Calcination of Kaolinite Clay Particles for Cement Production: A Modeling Study
,”
Cem. Concrete Res.
,
61–62
, pp.
11
19
.10.1016/j.cemconres.2014.04.002
43.
Linstrom
,
P. J.
, and
Mallard
,
W. G.
, eds.,
2018
,
NIST Chemistry WebBook, NIST Standard Reference Database Number
, Vol.
69
,
National Institute of Standards and Technology
,
Gaithersburg MD
.
44.
Waples
,
D. W.
, and
Waples
,
J. S.
,
2004
, “
A Review and Evaluation of Specific Heat Capacities of Rocks, Minerals, and Subsurface Fluids. Part 1: Minerals and Nonporous Rocks
,”
Nat. Resour. Res.
,
13
(
2
), pp.
97
122
.10.1023/B:NARR.0000032647.41046.e7
45.
Fehlberg
,
E.
,
1970
, “
Klassische Runge-Kutta-Formeln Vierter Und Niedrigerer Ordnung Mit Schrittweiten-Kontrolle Und Ihre Anwendung Auf Wärmeleitungsprobleme
,”
Computers
,
6
(
1–2
), pp.
61
71
.10.1007/BF02241732
46.
Johnston
,
R. L.
,
1982
,
Numerical Methods: A Software Approach
,
Wiley
,
New York
.
47.
de Almeida
,
J.
, Jr.
,
2016
, “
Solução Semianalítica de um Modelo de Transferência de Calor em Leito de Arrasto (Semi-Analytical Solution of a Heat Transfer Model in Moving Beds)
,” Master's thesis,
University of Blumenau
,
Blumenau
.
48.
Leung
,
P. K.
, and
Quon
,
D.
,
1965
, “
A Computer Model for Moving Beds – Chemical Reaction in Fluid Phase Only
,”
Can. J. Chem. Eng.
,
43
(
1
), pp.
45
48
.10.1002/cjce.5450430109
49.
Villadsen
,
J.
, and
Michelsen
,
M. L.
,
1978
,
Solution of Differential Equation Models by Polynomial Approximation
,
Prentice Hall
, Englewood Cliffs, NJ.
50.
Levy
,
J. H.
, and
Hurst
,
H. J.
,
1993
, “
Kinetics of Dehydroxylation, in Nitrogen and Water Vapour, of Kaolinite and Smectite From Australian Tertiary Oil Shales
,”
Fuel
,
72
(
6
), pp.
873
877
.10.1016/0016-2361(93)90095-J
51.
Bellotto
,
M.
,
Gualtieri
,
A.
,
Artioli
,
G.
, and
Clark
,
S.
,
1995
, “
Kinetic Study of the Kaolinite-Mullite Reaction Sequence. Part I: Kaolinite Dehydroxylation
,”
Phys. Chem. Miner.
,
22
(
4
), pp.
207
214
.10.1007/BF00202253
52.
Saikia
,
N.
,
Sengupta
,
P.
,
Gogoi
,
P. K.
, and
Borthakur
,
P. C.
,
2002
, “
Kinetics of Dehydroxylation of Kaolin in Presence of Oil Field Effluent Treatment Plant Sludge
,”
Appl. Clay Sci.
,
22
(
3
), pp.
93
102
.10.1016/S0169-1317(02)00130-8
53.
Ptáček
,
P.
,
Šoukal
,
F.
,
Opravil
,
T.
,
Havlica
,
J.
, and
Brandštetr
,
J.
,
2011
, “
The Kinetic Analysis of the Thermal Decomposition of Kaolinite by DTG Technique
,”
Powder Technol.
,
208
(
1
), pp.
20
25
.10.1016/j.powtec.2010.11.035
54.
Kissinger
,
H. E.
,
1956
, “
Variation of Peak Temperature With Heating Rate in Differential Thermal Analysis
,”
J. Res. Natl. Bureau Stand.
,
57
(
4
), p.
217
.10.6028/jres.057.026
You do not currently have access to this content.