Abstract

The use of porous media (PM) to improve conductive heat transfer has been at the focus of interest in recent years. Limited studies, however, have focused on heat transfer in radial heat sinks (RHSs) fully and partially saturated porous media with a different arrangement. As a development of the above-mentioned investigations, this research, therefore, addresses the ability of radial porous heat sink solutions to improve the thermohydraulic characteristics and reduce the effect of the second thermodynamics law. The response surface methodology (RSM) technique with ansysfluent-cfd is utilized to optimize the thermohydraulic features and the total entropy generation by the multi-objective optimum design for different design parameters such as porosity (Ø), inlet temperature (Tin), and applied heat flux (Q) simultaneously after achieving the optimum porous media arrangement related to the flow direction. The results show that, in terms of the flow direction, the optimum radial porous heat sink of the 100%PM model is recognized as providing the best results and the best option (fully saturated porous media). Moreover, a significant agreement between the predicted and numerical simulation data for the optimum values is also seen. The optimum and undesirable designs of the thermohydraulic features, the total entropy generation, and the optimum thermal management are detected in this investigation.

References

1.
Fadhil
,
A. M.
,
Khalil
,
W. H.
, and
Al-damook
,
A.
,
2019
, “
The Hydraulic-Thermal Performance of Miniature Compact Heat Sinks Using SiO2‐Water Nanofluids
,”
Heat Transfer—Asian Res.
,
48
(
7
), pp.
3101
3114
.10.1002/htj.21532
2.
Al‐damook
,
A.
,
Alfellag
,
M. A.
, and
Khalil
,
W. H.
,
2020
, “
Three‐Dimensional Computational Comparison of Mini Pinned Heat Sinks Using Different Nanofluids: Part One—The Hydraulic‐Thermal Characteristics
,”
Heat Transfer—Asian Res.
,
49
(
1
), pp.
591
613
.10.1002/htj.21628
3.
Al‐damook
,
A.
,
Alfellag
,
M.
, and
Khalil
,
W. H.
,
2020
, “
Three‐Dimensional Computational Comparison of Mini‐Pinned Heat Sinks Using Different Nanofluids: Part Two—Energy and Exergy Characteristics
,”
Heat Transfer—Asian Res.
,
49
(
1
), pp.
441
460
.10.1002/htj.21620
4.
Al-damook
,
A.
, and
Alkasmoul
,
F.
,
2018
, “
Heat Transfer and Airflow Characteristics Enhancement of Compact Plate-Pin Fins Heat Sinks—A Review
,”
Propul. Power Res.
,
7
(
2
), pp.
138
146
.10.1016/j.jppr.2018.05.003
5.
Al‐damook
,
A.
,
Al‐sallami
,
W.
,
Al‐asadi
,
M. T.
,
Abed
,
N.
, and
Khalil
,
W.
,
2018
, “
Hydrothermal PerformanceEnhancement in Different Types of Perforated Heat Sinks: A Review
,”
J. Multidiscip. Eng. Sci. Technol.
,
5
(
10
), pp.
8681
8694
.http://www.jmest.org/vol-5-issue-10-october-2018/
6.
Imran
,
A. A.
,
Mahmoud
,
N. S.
, and
Jaffal
,
H. M.
,
2018
, “
Numerical and Experimental Investigation of Heat Transfer in Liquid Cooling Serpentine Mini-Channel Heat Sink With Different New Configuration Models
,”
Therm. Sci. Eng. Prog.
,
6
, pp.
128
139
.10.1016/j.tsep.2018.03.011
7.
Limbasiya
,
N.
,
Roy
,
A.
, and
Harichandan
,
A. B.
,
2017
, “
Numerical Simulation of Heat Transfer for Microelectronic Heat Sinks With Different Fin Geometries in Tandem and Staggered Arrangements
,”
Therm. Sci. Eng. Prog.
,
4
, pp.
11
17
.10.1016/j.tsep.2017.08.002
8.
Hong
,
S.
,
Dang
,
C.
, and
Hihara
,
E.
,
2019
, “
Experimental Investigation on Flow Boiling in Radial Expanding Minichannel Heat Sinks Applied for Low Flow Inertia Condition
,”
Int. J. Heat Mass Transfer
,
143
, p.
118588
.10.1016/j.ijheatmasstransfer.2019.118588
9.
Qidwai
,
M. O.
,
Hasan
,
M. M.
,
Khan
,
N. Z.
, and
Khan
,
U.
,
2019
, “
Optimization of Heat Transfer Effects in Radial Fin Microchannel Heat Sink
,”
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
, Taylor and Francis, UK, pp.
1
13
.10.1080/15567036.2019.1704947
10.
Zhao
,
N.
,
Qi
,
C.
,
Chen
,
T.
,
Tang
,
J.
, and
Cui
,
X.
,
2019
, “
Experimental Study on Influences of Cylindrical Grooves on Thermal Efficiency, Exergy Efficiency and Entropy Generation of CPU Cooled by Nanofluids
,”
Int. J. Heat Mass Transfer
,
135
, pp.
16
32
.10.1016/j.ijheatmasstransfer.2019.01.106
11.
Khaleduzzaman
,
S. S.
,
Mahbubul
,
I. M.
,
Sohel
,
M. R.
,
Saidur
,
R.
,
Selvaraj
,
J.
,
Ward
,
T. A.
, and
Niza
,
M. E.
,
2017
, “
Experimental Analysis of Energy and Friction Factor for Titanium Dioxide Nanofluid in a Water Block Heat Sink
,”
Int. J. Heat Mass Transfer
,
115
, pp.
77
85
.10.1016/j.ijheatmasstransfer.2017.08.001
12.
Khaleduzzaman
,
S. S.
,
Sohel
,
M. R.
,
Saidur
,
R.
,
Mahbubul
,
I. M.
,
Shahrul
,
I. M.
,
Akash
,
B. A.
, and
Selvaraj
,
J.
,
2014
, “
Energy and Exergy Analysis of Alumina–Water Nanofluid for an Electronic Liquid Cooling System
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
118
127
.10.1016/j.icheatmasstransfer.2014.07.015
13.
Khaleduzzaman
,
S. S.
,
Sohel
,
M. R.
,
Mahbubul
,
I. M.
,
Saidur
,
R.
, and
Selvaraj
,
J.
,
2016
, “
Exergy and Entropy Generation Analysis of TiO2–Water Nanofluid Flow Through the Water Block as an Electronics Device
,”
Int. J. Heat Mass Transfer
,
101
, pp.
104
111
.10.1016/j.ijheatmasstransfer.2016.05.026
14.
Narendran
,
G.
,
Bhat
,
M. M.
,
Akshay
,
L.
, and
Perumal
,
D. A.
,
2018
, “
Experimental Analysis on Exergy Studies of Flow Through a Minichannel Using TiO2/Water Nanofluids
,”
Therm. Sci. Eng. Prog.
,
8
, pp.
93
104
.10.1016/j.tsep.2018.08.007
15.
Abed
,
N.
,
Afgan
,
I.
,
Cioncolini
,
A.
,
Iacovides
,
H.
,
Nasser
,
A.
, and
Mekhail
,
T.
,
2020
, “
Thermal Performance Evaluation of Various Nanofluids With Non-Uniform Heating for Parabolic Trough Collectors
,”
Case Stud. Therm. Eng.
,
22
, p.
100769
.10.1016/j.csite.2020.100769
16.
Ho
,
C. J.
, and
Chen
,
W. C.
,
2013
, “
An Experimental Study on Thermal Performance of Al2O3/Water Nanofluid in a Minichannel Heat Sink
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
516
522
.10.1016/j.applthermaleng.2012.07.037
17.
Ho
,
C. J.
,
Chung
,
Y. N.
, and
Lai
,
C. M.
,
2014
, “
Thermal Performance of Al2O3/Water Nanofluid in a Natural Circulation Loop With a Mini-Channel Heat Sink and Heat Source
,”
Energy Convers. Manage.
,
87
, pp.
848
858
.10.1016/j.enconman.2014.07.079
18.
Naphon
,
P.
, and
Nakharintr
,
L.
,
2013
, “
Heat Transfer of Nanofluids in the Mini-Rectangular Fin Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
40
, pp.
25
31
.10.1016/j.icheatmasstransfer.2012.10.012
19.
Sivakumar
,
A.
,
Alagumurthi
,
N.
, and
Senthilvelan
,
T.
,
2014
, “
Heat Transfer Enhancement of Serpentine Shaped Micro Channel Heat Sink With Al2O3/Water Nanofluid
,”
Int. J. Tech. Res. Appl.
,
2
(
4
), pp.
112
116
.https://www.ijtra.com/abstract.php?id=heat-transfer-enhancement-of-serpentine-shaped-micro-channel-heat-sink-with-al2o3water-nanofluid
20.
Heydari
,
A.
,
Akbari
,
O. A.
,
Safaei
,
M. R.
,
Derakhshani
,
M.
,
Alrashed
,
A. A.
,
Mashayekhi
,
R.
,
Shabani
,
G. A. S.
,
Zarringhalam
,
M.
, and
Nguyen
,
T. K.
,
2018
, “
The Effect of Attack Angle of Triangular Ribs on Heat Transfer of Nanofluids in a Microchannel
,”
J. Therm. Anal. Calorim.
,
131
(
3
), pp.
2893
2912
.10.1007/s10973-017-6746-x
21.
Behnampour
,
A.
,
Akbari
,
O. A.
,
Safaei
,
M. R.
,
Ghavami
,
M.
,
Marzban
,
A.
,
Sheikh Shabani
,
G. A.
,
Zarringhalam
,
M.
, and
Mashayekhi
,
R.
,
2017
, “
Analysis of Heat Transfer and Nanofluid Fluid Flow in Microchannels With Trapezoidal, Rectangular and Triangular Shaped Ribs
,”
Phys. E: Low-Dimens. Syst. Nanostruct.
,
91
, pp.
15
31
.10.1016/j.physe.2017.04.006
22.
Rashad
,
A. M.
,
Armaghani
,
T.
,
Chamkha
,
A. J.
, and
Mansour
,
M. A.
,
2018
, “
Entropy Generation and MHD Natural Convection of a Nanofluid in an Inclined Square Porous Cavity: Effects of a Heat Sink and Source Size and Location
,”
Chin. J. Phys.
,
56
(
1
), pp.
193
211
.10.1016/j.cjph.2017.11.026
23.
Akbarzadeh
,
M.
,
Rashidi
,
S.
,
Karimi
,
N.
, and
Omar
,
N.
,
2019
, “
First and Second Laws of Thermodynamics Analysis of Nanofluid Flow Inside a Heat Exchanger Duct With Wavy Walls and a Porous Insert
,”
J. Therm. Anal. Calorim.
,
135
(
1
), pp.
177
194
.10.1007/s10973-018-7044-y
24.
Chikh
,
S.
, and
Allouache
,
N.
,
2016
, “
Optimal Performance of an Annular Heat Exchanger With a Porous Insert for a Turbulent Flow
,”
Appl. Therm. Eng.
,
104
, pp.
222
230
.10.1016/j.applthermaleng.2016.05.069
25.
Mohamad
,
A. A.
,
2003
, “
Heat Transfer Enhancements in Heat Exchangers Fitted With Porous Media Part I: Constant Wall Temperature
,”
Int. J. Therm. Sci.
,
42
(
4
), pp.
385
395
.10.1016/S1290-0729(02)00039-X
26.
Kiwan
,
S.
, and
Al-Nimr
,
M. A.
,
2001
, “
Using Porous Fins for Heat Transfer Enhancement
,”
ASME J. Heat Transfer
,
123
(
4
), pp.
790
795
.10.1115/1.1371922
27.
Chen
,
X.
,
Tavakkoli
,
F.
, and
Vafai
,
K.
,
2015
, “
Analysis and Characterization of Metal Foam-Filled Double-Pipe Heat Exchangers
,”
Numer. Heat Transfer, Part A: Appl.
,
68
(
10
), pp.
1031
1049
.10.1080/10407782.2015.1031607
28.
Mahdavi
,
M.
,
Saffar-Avval
,
M.
,
Tiari
,
S.
, and
Mansoori
,
Z.
,
2014
, “
Entropy Generation and Heat Transfer Numerical Analysis in Pipes Partially Filled With Porous Medium
,”
Int. J. Heat Mass Transfer
,
79
, pp.
496
506
.10.1016/j.ijheatmasstransfer.2014.08.037
29.
Shirvan
,
K. M.
,
Ellahi
,
R.
,
Mirzakhanlari
,
S.
, and
Mamourian
,
M.
,
2016
, “
Enhancement of Heat Transfer and Heat Exchanger Effectiveness in a Double Pipe Heat Exchanger Filled With Porous Media: Numerical Simulation and Sensitivity Analysis of Turbulent Fluid Flow
,”
Appl. Therm. Eng.
,
109
, pp.
761
774
.10.1016/j.applthermaleng.2016.08.116
30.
Duryodhan
,
V. S.
,
Singh
,
S. G.
, and
Agrawal
,
A.
,
2013
, “
Liquid Flow Through a Diverging Microchannel
,”
Microfluid. Nanofluid.
,
14
(
1–2
), pp.
53
67
.10.1007/s10404-012-1022-7
31.
Duryodhan
,
V. S.
,
Singh
,
A.
,
Singh
,
S. G.
, and
Agrawal
,
A.
,
2016
, “
A Simple and Novel Way of Maintaining Constant Wall Temperature in Microdevices
,”
Sci. Rep.
,
6
(
1
), p.
18230
.10.1038/srep18230
32.
Bahrami
,
H. R. T.
,
Zarei
,
S.
, and
Saffari
,
H.
,
2019
, “
The Effect of Droplet Morphology on the Heat Transfer Performance of Micro-/Nanostructured Surfaces in Dropwise Condensation
,”
J. Therm. Anal. Calorim.
,
138
(
5
), pp.
2979
2988
.10.1007/s10973-019-08318-1
33.
Sheikholeslami
,
M.
,
2019
, “
New Computational Approach for Exergy and Entropy Analysis of Nanofluid Under the Impact of Lorentz Force Through a Porous Media
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
319
333
.10.1016/j.cma.2018.09.044
34.
Gholamalipour
,
P.
,
Siavashi
,
M.
, and
Doranehgard
,
M. H.
,
2019
, “
Eccentricity Effects of Heat Source Inside a Porous Annulus on the Natural Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
109
, p.
104367
.10.1016/j.icheatmasstransfer.2019.104367
35.
Deshamukhya
,
T.
,
Bhanja
,
D.
, and
Nath
,
S.
,
2021
, “
Heat Transfer Enhancement Through Porous Fins: A Comprehensive Review of Recent Developments and Innovations
,”
Proc. Inst. Mech. Eng., Part C
,
235
(
5
), pp.
946
960
.10.1177/0954406220939600
36.
Seyf
,
H. R.
, and
Layeghi
,
M.
,
2010
, “
Numerical Analysis of Convective Heat Transfer From an Elliptic Pin Fin Heat Sink With and Without Metal Foam Insert
,”
ASME J. Heat Transfer
,
132
(
7
), p.
071401
.10.1115/1.4000951
37.
Huang
,
Z. F.
,
Nakayama
,
A.
,
Yang
,
K.
,
Yang
,
C.
, and
Liu
,
W.
,
2010
, “
Enhancing Heat Transfer in the Core Flow by Using Porous Medium Insert in a Tube
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
1164
1174
.10.1016/j.ijheatmasstransfer.2009.10.038
38.
Targui
,
N.
, and
Kahalerras
,
H.
,
2008
, “
Analysis of Fluid Flow and Heat Transfer in a Double Pipe Heat Exchanger With Porous Structures
,”
Energy Convers. Manage.
,
49
(
11
), pp.
3217
3229
.10.1016/j.enconman.2008.02.010
39.
Arasteh
,
H.
,
Salimpour
,
M. R.
, and
Tavakoli
,
M. R.
,
2019
, “
Optimal Distribution of Metal Foam Inserts in a Double-Pipe Heat Exchanger
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
4
), pp.
1322
3142
.10.1108/HFF-04-2018-0162
40.
Bahrami
,
H. R. T.
, and
Safikhani
,
H.
,
2020
, “
Heat Transfer Enhancement Inside an Eccentric Cylinder With an Inner Rotating Wall Using Porous Media: A Numerical Study
,”
J. Therm. Anal. Calorim.
,
141
, pp.
1905
1917
.10.1007/s10973-020-09532-y
41.
Walsh
,
E.
, and
Grimes
,
R.
,
2007
, “
Low Profile Fan and Heat Sink Thermal Management Solution for Portable Applications
,”
Int. J. Therm. Sci.
,
46
(
11
), pp.
1182
1190
.10.1016/j.ijthermalsci.2007.03.010
42.
Faraj
,
A. F. F.
,
Azzawi
,
I. D. J.
,
Yahya
,
S. G.
, and
Al-damook
,
A.
,
2020
, “
Computational Fluid Dynamics Investigation of Pitch Variations on Helically Coiled Pipe in Laminar Flow Region
,”
ASME J. Heat Transfer
,
142
(
10
), p.
104503
.10.1115/1.4047646
43.
Fadhil
,
A. M.
,
Khalil
,
W. H.
,
Al‐damook
,
A.
,
Ahmadi
,
M. H.
,
Ghalandari
,
M.
, and
Yusaf
,
T.
,
2020
, “
Numerical Investigation of Hydraulic‐Thermal Performance and Entropy Generation of Compact Heat Sinks With SiO2‐Water Nanofluids
,”
Math. Methods Appl. Sci.
, pp.
1
25
.10.1002/mma.6664
44.
ANSYS
,
2012
, “
ANSYS Fluent V 14.5 User's Guide
,” Ansys Inc., Canonsburg, PA.
45.
Rajab
,
H.
,
Yin
,
D.
, and
Ma
,
H.
,
2017
, “
Numerical Analysis of Effects of Nanofluid and Angular Orientation on Heat Transfer Performance of an Elliptical Pin-Fin Heat Sink
,”
Heat Transfer Res.
,
48
(
2
), pp.
161
175
.10.1615/HeatTransRes.2016011084
You do not currently have access to this content.