Abstract

The laser-flash method (LFM) is a technique commonly used to measure thermal diffusivity of homogeneous and isotropic materials, but can also be applied to macroscopically inhomogeneous materials, such as composites. When composites present thermal anisotropy, as fiber-reinforced, LFM can be used to measure the effective thermal diffusivity (αeff) in the direction of heat flux. In this work, the thermal behavior of composites during thermal diffusivity measurements with the LFM was simulated with a finite element model (FEM) using a commercial software. Three composite structures were considered: sandwich layered (layers arranged in series or parallel), fiber-reinforced composites, and particle composite (spheres). Numerical data were processed through a nonlinear least-square fitting (NL-LSF) to obtain the effective thermal diffusivity of the composite. This value has the meaning of “dynamic effective thermal diffusivity.” Afterward, the effective thermal conductivity (λeff) is calculated from the dynamic effective thermal diffusivity, equivalent heat capacity, and density of the composite. The results of this methodology are compared with the analytically calculated values of the same quantity. This last assumes the meaning of “static effective thermal conductivity.” The comparison of the dynamic and static property values is so related to the inhomogeneity of the samples, and a deviation of the temperature versus time trend from the analytical solution for the perfectly homogeneous sample gives information about the lack of uniformity of the sample.

References

1.
Gori
,
F.
, and
Corasaniti
,
S.
,
2014
, “
Effective Thermal Conductivity of Composites
,”
Int. J. Heat Mass Transfer
,
77
, pp.
653
661
.10.1016/j.ijheatmasstransfer.2014.05.047
2.
Corasaniti
,
S.
, and
Gori
,
F.
,
2015
, “
Further Considerations on Anisotropic Thermal Efficiency of Symmetric Composites
,”
Int. J. Heat Mass Transfer
,
88
, pp.
836
843
.10.1016/j.ijheatmasstransfer.2015.04.111
3.
Gori
,
F.
,
Ciparisse
,
J. F.
, and
Corasaniti
,
S.
,
2012
, “
Thermal Anisotropic Properties of Composite Materials
,” IEEE Aerospace Conference Proceedings, Big Sky, MT, Mar. 3–10, Paper No.
6187284
. 10.1109/AERO.2012.6187284
4.
Gori
,
F.
,
Corasaniti
,
S.
, and
Ciparisse
,
J. F.
,
2012
, “
Theoretical Prediction of the Anisotropic Effective Thermal Conductivity of Composite Materials
,”
ASME
Paper No. IMECE2012-86114.10.1115/IMECE2012-86114
5.
Bovesecchi
,
G.
,
Coppa
,
P.
, and
Potenza
,
M.
,
2017
, “
A Numerical Model to Explain Experimental Results of Effective Thermal Conductivity Measurements on Unsaturated Soils
,”
Int. J. Thermophys.
,
38
(
5
), p.
68
.10.1007/s10765-017-2202-1
6.
Jaiganesh
,
V.
,
Manivannan
,
S.
, and
Manivannan
,
S.
,
2014
, “
Numerical Analysis and Simulation of Nylon Composite Propeller for Aircraft
,”
Procedia Eng.
,
97
, pp.
1079
1088
.10.1016/j.proeng.2014.12.386
7.
Bocchini
,
G. F.
,
Bovesecchi
,
G.
,
Coppa
,
P.
,
Corasaniti
,
S.
,
Montanari
,
R.
, and
Varone
,
A.
,
2016
, “
Thermal Diffusivity of Sintered Steels With Flash Method at Ambient Temperature
,”
Int. J. Thermophys.
,
37
(
4
), p.
38
.10.1007/s10765-016-2050-4
8.
McCombie
,
M. L.
,
Tarnawski
,
V. R.
,
Bovesecchi
,
G.
,
Coppa
,
P.
, and
Leong
,
W. H.
,
2017
, “
Thermal Conductivity of Pyroclastic Soil (Pozzolana) From the Environs of Rome
,”
Int. J. Thermophys.
,
38
(
2
), p.
21
.10.1007/s10765-016-2161-y
9.
Yamada
,
R.
,
Igawa
,
N.
,
Taguchi
,
T.
, and
Jitsukawa
,
S.
,
2002
, “
Highly Thermal Conductive, Sintered SiC Fiber-Reinforced 3D-SiC/SiC Composites: Experiments and Finite-Element Analysis of the Thermal Diffusivity/Conductivity
,”
J. Nucl. Mater.
,
307–311
(
2
), pp.
1215
1220
.10.1016/S0022-3115(02)00957-1
10.
Alway-Cooper
,
R. M.
,
Theodore
,
M.
,
Anderson
,
D. P.
, and
Ogale
,
A. A.
,
2013
, “
Transient Heat Flow in Unidirectional Fiber–Polymer Composites During Laser Flash Analysis: Experimental Measurements and Finite Element Modeling
,”
J. Compos. Mater.
,
47
(
19
), pp.
2399
2411
.10.1177/0021998312458130
11.
Corasaniti
,
S.
,
Potenza
,
M.
,
Coppa
,
P.
, and
Bovesecchi
,
G.
,
2020
, “
Comparison of Different Approaches to Evaluate the Equivalent Thermal Diffusivity of Building Walls Under Dynamic Conditions
,”
Int. J. Therm. Sci.
,
150
, p.
106232
.10.1016/j.ijthermalsci.2019.106232
12.
Potenza
,
M.
,
Coppa
,
P.
,
Cerroni
,
L.
, and
Bovesecchi
,
G.
,
2021
, “
Thermal Behavior of Teeth During Restoration Procedure With Composite: Experimental Tests and Numerical Simulation
,”
ASME J. Heat Transfer
,
143
(
2
), p.
022901
.10.1115/1.4048922
13.
Bovesecchi
,
G.
,
Coppa
,
P.
,
Corasaniti
,
S.
, and
Potenza
,
M.
,
2018
, “
Critical Analysis of Dual-Probe Heat-Pulse Technique Applied to Measuring Thermal Diffusivity
,”
Int. J. Thermophys.
,
39
(
7
), p.
82
.10.1007/s10765-018-2402-3
14.
Bovesecchi
,
G.
,
Coppa
,
P.
, and
Pistacchio
,
S.
,
2018
, “
A New Thermal Conductivity Probe for High Temperature Tests for the Characterization of Molten Salts
,”
Rev. Sci. Instrum.
,
89
(
5
), p.
055107
.10.1063/1.5019776
15.
Bovesecchi
,
G.
, and
Coppa
,
P.
,
2013
, “
Basic Problems in Thermal-Conductivity Measurements of Soils
,”
Int. J. Thermophys.
,
34
(
10
), pp.
1962
1974
.10.1007/s10765-013-1503-2
16.
Weidenfeller
,
B.
,
Höfer
,
M.
, and
Schilling
,
F. R.
,
2004
, “
Thermal Conductivity, Thermal Diffusivity, and Specific Heat Capacity of Particle Filled Polypropylene
,”
Composites, Part A
,
35
(
4
), pp.
423
429
.10.1016/j.compositesa.2003.11.005
17.
Vdovichenko
,
I. I.
,
Yakovlev
,
M. Y.
,
Vershinin
,
A. V.
, and
Levin
,
V. A.
,
2016
, “
Calculation of the Effective Thermal Properties of the Composites Based on the Finite Element Solutions of the Boundary Value Problems
,” 11th International Conference on Mesh Methods for Boundary-Value Problems and Applications, Vol.
158
, Kazan, Russia, Oct. 20–25, pp. 1–7, Paper No.
012094
.https://iopscience.iop.org/article/10.1088/1757-899X/158/1/012094
18.
Pietrak
,
K.
, and
Wiśniewski
,
T. S.
,
2015
, “
A Review of Models for Effective Thermal Conductivity of Composite Materials
,”
J. Power Technol.
,
95
(
1
), pp.
14
24
. https://papers.itc.pw.edu.pl/index.php/JPT/article/view/463/637
19.
Tarnawski
,
V. R.
,
Tsuchiya
,
F.
,
Coppa
,
P.
, and
Bovesecchi
,
G.
,
2019
, “
Volcanic Soils: Inverse Modeling of Thermal Conductivity Data
,”
Int. J. Thermophys.
,
40
(
2
), p.
14
.10.1007/s10765-018-2480-2
20.
Tarnawski
,
V. R.
,
Coppa
,
P.
,
Leong
,
W. H.
,
McCombie
,
M. L.
, and
Bovesecchi
,
G.
,
2020
, “
On Modelling the Thermal Conductivity of Soils Using Normalized-Multi-Variable Pedotransfer Functions
,”
Int. J. Therm. Sci.
,
156
, p.
106493
.10.1016/j.ijthermalsci.2020.106493
21.
Kikuchi
,
K.
,
Kang
,
Y.-S.
,
Kawasaki
,
A.
,
Nishida
,
S.
, and
Ichida
,
A.
,
2004
, “
Microstructural Modeling and Thermal Property Simulation of Unidirectional Composite
,”
Mater. Trans.
,
45
(
2
), pp.
542
549
.10.2320/matertrans.45.542
22.
Potenza
,
M.
,
Cataldo
,
A.
,
Bovesecchi
,
G.
,
Corasaniti
,
S.
,
Coppa
,
P.
, and
Bellucci
,
S.
,
2017
, “
Graphene Nanoplatelets: Thermal Diffusivity and Thermal Conductivity by the Flash Method
,”
AIP Adv.
,
7
(
7
), p.
075214
.10.1063/1.4995513
23.
Bellucci
,
S.
,
Bovesecchi
,
G.
,
Cataldo
,
A.
,
Coppa
,
P.
,
Corasaniti
,
S.
, and
Potenza
,
M.
,
2019
, “
Transmittance and Reflectance Effects During Thermal Diffusivity Measurements of GNP Samples With the Flash Method
,”
Materials
,
12
(
5
), p.
696
.10.3390/ma12050696
24.
Taylor
,
R. E.
,
Jortner
,
J.
, and
Groot
,
H.
,
1985
, “
Thermal Diffusivity of Fiber-Reinforced Composites Using the Laser Flash Technique
,”
Carbon
,
23
(
2
), pp.
215
222
.10.1016/0008-6223(85)90014-4
25.
Holman
,
J. P.
,
2010
,
Heat Transfer
, 10th ed.,
McGraw-Hill
, New York, p.
758
.
26.
Parker
,
W. J.
,
Jenkins
,
R. J.
,
Butler
,
C. P.
, and
Abbott
,
G. L.
,
1961
, “
Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity
,”
J. Appl. Phys.
,
32
(
9
), pp.
1679
1684
.10.1063/1.1728417
27.
Chawla
,
K. K.
,
2012
,
Composite Materials, Science and Engineering
,
Springer-Verlag
,
New York
, p.
542
.
28.
Russel
,
H. W.
,
1935
, “
Principles of Heat Flow in Porous Insulators
,”
J. Am. Ceram. Soc.
,
18
(
1–12
), pp.
1
5
.10.1111/j.1151-2916.1935.tb19340.x
29.
Chauhan
,
D.
,
Singhvi
,
N.
, and
Singh
,
R.
,
2012
, “
Effect of Geometry of Filler Particles on the Effective Thermal Conductivity of Two-Phase Systems
,”
Int. J. Mod. Nonlinear Theory Appl.
,
1
(
2
), pp.
40
46
.10.4236/ijmnta.2012.12005
30.
Doebelin
,
E. O.
,
1975
,
Measurement Systems, Application and Design
,
McGraw-Hill
, New York.
31.
van der Vegt
,
A. K.
, and
Govaert
,
L. E.
,
2005
,
Polymeren: Van Keten Tot Kunststof
,
Delft University Press
, Delft, The Netherlands, p.
250
.
You do not currently have access to this content.