Abstract

Jet impingement cooling is considered as one of the most effective heat transfer enhancement techniques. The primary mode of heat transfer enhancement is due to the flow stagnation. The effectiveness of jet impingement as a cooling technique is well documented; however, the application of jet impingement to different problems has been hindered by inability of manufacturing methods to incorporate impingement systems easily into cooling designs. Impingement heat transfer effectiveness can be further improved by improving the jet strength by modifying the jet holes, enhancing surface features, or adding swirl. With an increased usage of this cooling technique and additional modifications in geometry to further enhance the heat transfer capacity to suit different applications, this paper provides a much-needed review of the advancements in the effectiveness of this cooling technique. A comprehensive look at impingement cooling over a variety of modifications and applications with a focus on improved manufacturing techniques impacting novel design and implementation is provided for a variety of heat transfer enhancement applications.

References

1.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.10.1016/0142-727X(92)90017-4
2.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.10.1016/0894-1777(93)90022-B
3.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
.10.1016/S0065-2717(06)39006-5
4.
San
,
J. Y.
, and
Chen
,
J. J.
,
2014
, “
Effects of Jet-to-Jet Spacing and Jet Height on Heat Transfer Characteristics of an Impinging Jet Array
,”
Int. J. Heat Mass Transfer
,
71
, pp.
8
17
.10.1016/j.ijheatmasstransfer.2013.11.079
5.
Livingood
,
J. N. B.
, and
Hrycak
,
P.
,
1973
, “
Impingement Heat Transfer From Turbulent Air Jets to Flat Plates—A Literature Survey
,” Lewis Research Centre, Cleveland, OH, Report No. NASA TM X-2778.
6.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
,
Takeuchi
,
D. I.
, and
Berry
,
R. A.
,
1980
, “
Multiple Jet Impingement Characteristics—Experimental Investigation of In-Line And Staggered Arrays With Crossflow
,” NASA, Glenn Research Center, Cleveland, OH, Report No. 3217.
7.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.10.1615/HeatTransRes.v42.i2.30
8.
Miao
,
J. M.
,
Wu
,
C. Y.
, and
Chen
,
P. H.
,
2009
, “
Numerical Investigation of Confined Multiple-Jet Impingement Cooling Over a Flat Plate at Different Crossflow Orientations
,”
Numer. Heat Transfer, Part A
,
55
(
11
), pp.
1019
1050
.10.1080/10407780903014335
9.
Singh
,
P.
, and
Ekkad
,
S.
,
2017
, “
Experimental Study of Heat Transfer Augmentation in a Two-Pass Channel Featuring V-Shaped Ribs and Cylindrical Dimples
,”
Appl. Therm. Eng.
,
116
, pp.
205
216
.10.1016/j.applthermaleng.2017.01.098
10.
Singh
,
P.
,
Pandit
,
J.
, and
Ekkad
,
S. V.
,
2017
, “
Characterization of Heat Transfer Enhancement and Frictional Losses in a Two-Pass Square Duct Featuring Unique Combinations of Rib Turbulators and Cylindrical Dimples
,”
Int. J. Heat Mass Transfer
,
106
, pp.
629
647
.10.1016/j.ijheatmasstransfer.2016.09.037
11.
Singh
,
P.
,
Ravi
,
B. V.
, and
Ekkad
,
S. V.
,
2016
, “
Experimental and Numerical Study of Heat Transfer Due to Developing Flow in a Two-Pass Rib Roughened Square Duct
,”
Int. J. Heat Mass Transfer
,
102
, pp.
1245
1256
.10.1016/j.ijheatmasstransfer.2016.07.015
12.
Singh
,
P.
,
Li
,
W.
,
Ekkad
,
S. V.
, and
Ren
,
J.
,
2017
, “
A New Cooling Design for Rib Roughened Two-Pass Channel Having Positive Effects of Rotation on Heat Transfer Enhancement on Both Pressure and Suction Side Internal Walls of a Gas Turbine Blade
,”
Int. J. Heat Mass Transfer
,
115
, pp.
6
20
.10.1016/j.ijheatmasstransfer.2017.07.128
13.
Singh
,
P.
,
Li
,
W.
,
Ekkad
,
S. V.
, and
Ren
,
J.
,
2017
, “
Experimental and Numerical Investigation of Heat Transfer Inside Two-Pass Rib Roughened Duct (AR = 1: 2) Under Rotating and Stationary Conditions
,”
Int. J. Heat Mass Transfer
,
113
, pp.
384
398
.10.1016/j.ijheatmasstransfer.2017.05.085
14.
Yan
,
Y.
, and
Owen
,
J. M.
,
2002
, “
Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
29
35
.10.1016/S0142-727X(01)00125-4
15.
Kakade
,
V. U.
,
Lock
,
G. D.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Mayhew
,
J. E.
,
2009
, “
Accurate Heat Transfer Measurements Using Thermochromic Liquid Crystal—Part 1: Calibration and Characteristics of Crystals
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
939
949
.10.1016/j.ijheatfluidflow.2009.04.007
16.
Lytle
,
D.
, and
Webb
,
B. W.
,
1994
, “
Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1687
1697
.10.1016/0017-9310(94)90059-0
17.
Goldstein
,
R. J.
, and
Behbahani
,
A. I.
,
1982
, “
Impingement of a Circular Jet With and Without Cross Flow
,”
Int. J. Heat Mass Transfer
,
25
(
9
), pp.
1377
1382
.10.1016/0017-9310(82)90131-4
18.
Sparrow
,
E. M.
,
Goldstein
,
R. J.
, and
Rouf
,
M. A.
,
1975
, “
Effect of Nozzle—Surface Separation Distance on Impingement Heat Transfer for a Jet in a Crossflow
,”
ASME J. Heat Transfer
,
97
(
4
), pp.
528
533
.10.1115/1.3450423
19.
Chupp
,
R. E.
,
Helms
,
H. E.
,
McFadden
,
P. W.
, and
Brown
,
T. R.
,
1969
, “
Evaluation of Internal Heat-Transfer Coefficients for Impingement-Cooled Turbine Airfoils
,”
J. Aircr.
,
6
(
3
), pp.
203
208
.10.2514/3.44036
20.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
,
92
(
1
), pp.
73
82
.10.1115/1.3445306
21.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME
Paper No. 81-GT-77.10.1115/81-GT-77
22.
Obot
,
N. T.
, and
Trabold
,
T. A.
,
1987
, “
Impingement Heat Transfer Within Arrays of Circular Jets—Part 1: Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
872
879
.10.1115/1.3248197
23.
Brevet
,
P.
,
Dejeu
,
C.
,
Dorignac
,
E.
,
Jolly
,
M.
, and
Vullierme
,
J. J.
,
2002
, “
Heat Transfer to a Row of Impinging Jets in Consideration of Optimization
,”
Int. J. Heat Mass Transfer
,
45
(
20
), pp.
4191
4200
.10.1016/S0017-9310(02)00128-X
24.
San
,
J. Y.
, and
Lai
,
M. D.
,
2001
, “
Optimum Jet-to-Jet Spacing of Heat Transfer for Staggered Arrays of Impinging Air Jets
,”
Int. J. Heat Mass Transfer
,
44
(
21
), pp.
3997
4007
.10.1016/S0017-9310(01)00043-6
25.
Hansen
,
L. G.
, and
Webb
,
B. W.
,
1993
, “
Air Jet Impingement Heat Transfer From Modified Surfaces
,”
Int. J. Heat Mass Transfer
,
36
(
4
), pp.
989
997
.10.1016/S0017-9310(05)80283-2
26.
Gabour
,
L. A.
, and
Lienhard
, V
,
J. H.
,
1994
, “
Wall Roughness Effects on Stagnation-Point Heat Transfer Beneath an Impinging Liquid Jet
,”
ASME J. Heat Transfer
,
116
(
1
), pp.
81
87
.10.1115/1.2910887
27.
Chakroun
,
W. M.
,
Abdel-Rahman
,
A. A.
, and
Al-Fahed
,
S. F.
,
1998
, “
Heat Transfer Augmentation for Air Jet Impinged on a Rough Surface
,”
Appl. Therm. Eng.
,
18
(
12
), pp.
1225
1241
.10.1016/S1359-4311(97)00100-2
28.
Beitelmal
,
A. H.
,
Saad
,
M. A.
, and
Patel
,
C. D.
,
2000
, “
Effects of Surface Roughness on the Average Heat Transfer of an Impinging Air Jet
,”
Int. Commun. Heat Mass Transfer
,
27
(
1
), pp.
1
12
.10.1016/S0735-1933(00)00079-8
29.
Azad
,
G. S.
,
Huang
,
Y.
, and
Han
,
J.-C.
,
2002
, “
Jet Impingement Heat Transfer on Pinned Surface Using a Transient Liquid Cristal Technique
,”
Int. J. Rotating Mach.
,
8
(
3
), pp.
161
173
.10.1155/S1023621X02000155
30.
Taslim
,
M. E.
,
Pan
,
Y.
, and
Bakhtari
,
K.
,
2002
, “
Experimental Racetrack Shaped Jet Impingement on a Roughened Leading-Edge Wall With Film Holes
,”
ASME
Paper No. GT2002-30477.10.1115/GT2002-30477
31.
Son
,
C.
,
Dailey
,
G.
,
Ireland
,
P.
, and
Gillespie
,
D.
,
2005
, “
An Investigation of the Application of Roughness Elements to Enhance Heat Transfer in an Impingement Cooling System
,”
ASME
Paper No. GT2005-68504.10.1115/GT2005-68504
32.
Jeffers
,
N. M. R.
,
Punch
,
J.
,
Walsh
,
E. J.
, and
McLean
,
M.
,
2009
, “
Heat Transfer From Novel Target Surface Structures to a Normally Impinging, Submerged and Confined Water Jet
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
3
), p.
31001
.10.1115/1.4000564
33.
Caliskan
,
S.
,
2013
, “
Flow and Heat Transfer Characteristics of Transverse Perforated Ribs Under Impingement Jets
,”
Int. J. Heat Mass Transfer
,
66
, pp.
244
260
.10.1016/j.ijheatmasstransfer.2013.07.027
34.
Liu
,
Y. H.
,
Song
,
S. J.
, and
Lo
,
Y. H.
,
2013
, “
Jet Impingement Heat Transfer on Target Surfaces With Longitudinal and Transverse Grooves
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
292
299
.10.1016/j.ijheatmasstransfer.2012.11.042
35.
Tan
,
L.
,
Zhang
,
J. Z.
, and
Xu
,
H. S.
,
2014
, “
Jet Impingement on a Rib-Roughened Wall Inside Semi-Confined Channel
,”
Int. J. Therm. Sci.
,
86
, pp.
210
218
.10.1016/j.ijthermalsci.2014.06.037
36.
Wang
,
L.
,
Sundén
,
B.
,
Borg
,
A.
, and
Abrahamsson
,
H.
,
2011
, “
Control of Jet Impingement Heat Transfer in Crossflow by Using a Rib
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4157
4166
.10.1016/j.ijheatmasstransfer.2011.06.004
37.
Kim
,
S. M.
,
Afzal
,
A.
, and
Kim
,
K. Y.
,
2016
, “
Optimization of a Staggered Jet-Convex Dimple Array Cooling System
,”
Int. J. Therm. Sci.
,
99
, pp.
161
169
.10.1016/j.ijthermalsci.2015.08.013
38.
Jing
,
Q.
,
Zhang
,
D.
, and
Xie
,
Y.
,
2018
, “
Numerical Investigations of Impingement Cooling Performance on Flat and Non-Flat Targets With Dimple/Protrusion and Triangular Rib
,”
Int. J. Heat Mass Transfer
,
126
, pp.
169
190
.10.1016/j.ijheatmasstransfer.2018.05.009
39.
Azad
,
G. S.
,
Huang
,
Y.
, and
Han
,
J. C.
,
2000
, “
Impingement Heat Transfer on Dimpled Surfaces Using a Transient Liquid Crystal Technique
,”
J. Thermophys. Heat Transfer
,
14
(
2
), pp.
186
193
.10.2514/2.6530
40.
Ekkad
,
S. V.
, and
Kontrovitz
,
D.
,
2002
, “
Jet Impingement Heat Transfer on Dimpled Target Surfaces
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
22
28
.10.1016/S0142-727X(01)00139-4
41.
Xing
,
Y.
, and
Weigand
,
B.
,
2010
, “
Experimental Investigation of Impingement Heat Transfer on a Flat and Dimpled Plate With Different Crossflow Schemes
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3874
3886
.10.1016/j.ijheatmasstransfer.2010.05.006
42.
Kanokjaruvijit
,
K.
, and
Martinez-Botas
,
R. F.
,
2005
, “
Jet Impingement on a Dimpled Surface With Different Crossflow Schemes
,”
Int. J. Heat Mass Transfer
,
48
(
1
), pp.
161
170
.10.1016/j.ijheatmasstransfer.2004.08.005
43.
Kanokjaruvijit
,
K.
, and
Martinez-Botas
,
R. F.
,
2005
, “
Parametric Effects on Heat Transfer of Impingement on Dimpled Surface
,”
ASME. J. Turbomach.
,
127
(
2
), pp.
287
296
.10.1115/1.1791292
44.
Zhang
,
D.
,
Qu
,
H.
,
Lan
,
J.
,
Chen
,
J.
, and
Xie
,
Y.
,
2013
, “
Flow and Heat Transfer Characteristics of Single Jet Impinging on Protrusioned Surface
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
18
28
.10.1016/j.ijheatmasstransfer.2012.11.019
45.
Caliskan
,
S.
, and
Baskaya
,
S.
,
2012
, “
Experimental Investigation of Impinging Jet Array Heat Transfer From a Surface With V-Shaped and Convergent-Divergent Ribs
,”
Int. J. Therm. Sci.
,
59
, pp.
234
246
.10.1016/j.ijthermalsci.2012.04.013
46.
El-Gabry
,
L. A.
, and
Kaminski
,
D. A.
,
2005
, “
Experimental Investigation of Local Heat Transfer Distribution on Smooth and Roughened Surfaces Under an Array of Angled Impinging Jets
,”
ASME J. Turbomach.
,
127
(
3
), pp.
532
544
.10.1115/1.1861918
47.
Moreno
,
G.
,
Narumanchi
,
S.
,
Venson
,
T.
, and
Bennion
,
K.
,
2013
, “
Microstructured Surfaces for Single-Phase Jet Impingement Heat Transfer Enhancement
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
3
), p.
31004
.10.1115/1.4023308
48.
Singh
,
P.
,
Zhang
,
M.
,
Ahmed
,
S.
,
Ramakrishnan
,
K. R.
, and
Ekkad
,
S.
,
2019
, “
Effect of Micro-Roughness Shapes on Jet Impingement Heat Transfer and Fin-Effectiveness
,”
Int. J. Heat Mass Transfer
,
132
, pp.
80
95
.10.1016/j.ijheatmasstransfer.2018.11.135
49.
Rao
,
Y.
,
2018
, “
Jet Impingement Heat Transfer in Narrow Channels With Different Pin Fin Configurations on Target Surfaces
,”
ASME J. Heat Transfer
,
140
(
7
), p.
072201
.10.1115/1.4039015
50.
McInturff
,
P.
,
Suzuki
,
M.
,
Ligrani
,
P.
,
Nakamata
,
C.
, and
Lee
,
D. H.
,
2018
, “
Effects of Hole Shape on Impingement Jet Array Heat Transfer With Small-Scale, Target Surface Triangle Roughness
,”
Int. J. Heat Mass Transfer
,
127
, pp.
585
597
.10.1016/j.ijheatmasstransfer.2018.06.025
51.
Colucci
,
D. W.
, and
Viskanta
,
R.
,
1996
, “
Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet
,”
Exp. Therm. Fluid Sci.
,
13
(
1
), pp.
71
80
.10.1016/0894-1777(96)00015-5
52.
Brignoni
,
L. A.
, and
Garimella
,
S. V.
,
2000
, “
Effects of Nozzle-Inlet Chamfering on Pressure Drop and Heat Transfer in Confined Air Jet Impingement
,”
Int. J. Heat Mass Transfer
,
43
(
7
), pp.
1133
1139
.10.1016/S0017-9310(99)00207-0
53.
Garimella
,
S. V.
, and
Nenaydykh
,
B.
,
1996
, “
Nozzle-Geometry Effects in Liquid Jet Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
39
(
14
), pp.
2915
2923
.10.1016/0017-9310(95)00382-7
54.
Nuntadusit
,
C.
,
Wae-Hayee
,
M.
,
Tekasakul
,
P.
, and
Eiamsa-Ard
,
S.
,
2012
, “
Local Heat Transfer Characteristics of Array Impinging Jets From Elongated Orifices
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1154
1164
.10.1016/j.icheatmasstransfer.2012.06.014
55.
Zukowski
,
M.
,
2013
, “
Heat Transfer Performance of a Confined Single Slot Jet of Air Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
484
490
.10.1016/j.ijheatmasstransfer.2012.10.069
56.
Narayanan
,
V.
,
Seyed-Yagoobi
,
J.
, and
Page
,
R. H.
,
2004
, “
An Experimental Study of Fluid Mechanics and Heat Transfer in an Impinging Slot Jet Flow
,”
Int. J. Heat Mass Transfer
,
47
(8–9), pp.
1827
1845
.10.1016/j.ijheatmasstransfer.2003.10.029
57.
Neil Jordan
,
C.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2016
, “
Impingement Heat Transfer on a Cylindrical, Concave Surface With Varying Jet Geometries
,”
ASME J. Heat Transfer
,
138
(
12
), p.
122202
.10.1115/1.4034180
58.
Martin
,
R. H.
, and
Buchlin
,
J. M.
,
2011
, “
Jet Impingement Heat Transfer From Lobed Nozzles
,”
Int. J. Therm. Sci.
,
50
(
7
), pp.
1199
1206
.10.1016/j.ijthermalsci.2011.02.017
59.
Yamane
,
Y.
,
Yamamoto
,
M.
,
Motosuke
,
M.
, and
Honami
,
S.
,
2013
, “
Effect of Jet Shape of Square Array of Multi-Impinging Jets on Heat Transfer
,”
ASME
Paper No. GT2013-94452.10.1115/GT2013-94452
60.
Kristiawan
,
M.
,
Meslem
,
A.
,
Nastase
,
I.
, and
Sobolik
,
V.
,
2012
, “
Wall Shear Rates and Mass Transfer in Impinging Jets: Comparison of Circular Convergent and Cross-Shaped Orifice Nozzles
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
282
293
.10.1016/j.ijheatmasstransfer.2011.09.014
61.
Violato
,
D.
,
Ianiro
,
A.
,
Cardone
,
G.
, and
Scarano
,
F.
,
2012
, “
Three-Dimensional Vortex Dynamics and Convective Heat Transfer in Circular and Chevron Impinging Jets
,”
Int. J. Heat Fluid Flow
,
37
, pp.
22
36
.10.1016/j.ijheatfluidflow.2012.06.003
62.
Guan
,
T.
,
Zhang
,
J. Z.
, and
Shan
,
Y.
,
2017
, “
Conjugate Heat Transfer on Leading Edge of a Conical Wall Subjected to External Cold Flow and Internal Hot Jet Impingement From Chevron Nozzle—Part 2: Numerical Analysis
,”
Int. J. Heat Mass Transfer
,
106
, pp.
339
355
.10.1016/j.ijheatmasstransfer.2016.10.048
63.
Yuan
,
Z. X.
,
Chen
,
Y. Y.
,
Jiang
,
J. G.
, and
Ma
,
C. F.
,
2006
, “
Swirling Effect of Jet Impingement on Heat Transfer From a Flat Surface to CO2 Stream
,”
Exp. Therm. Fluid Sci.
,
31
(
1
), pp.
55
60
.10.1016/j.expthermflusci.2005.12.007
64.
Nuntadusit
,
C.
,
Wae-Hayee
,
M.
,
Bunyajitradulya
,
A.
, and
Eiamsa-Ard
,
S.
,
2012
, “
Visualization of Flow and Heat Transfer Characteristics for Swirling Impinging Jet
,”
Int. Commun. Heat Mass Transfer
,
39
(
5
), pp.
640
648
.10.1016/j.icheatmasstransfer.2012.03.002
65.
Wen
,
M. Y.
,
2005
, “
Flow Structures and Heat Transfer of Swirling Jet Impinging on a Flat Surface With Micro-Vibrations
,”
Int. J. Heat Mass Transfer
,
48
(
3–4
), pp.
545
560
.10.1016/j.ijheatmasstransfer.2004.09.010
66.
Yang
,
H. Q.
,
Kim
,
T.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2010
, “
Flow Structure, Wall Pressure and Heat Transfer Characteristics of Impinging Annular Jet With/Without Steady Swirling
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4092
4100
.10.1016/j.ijheatmasstransfer.2010.05.029
67.
Luo
,
D. D.
,
Zhen
,
H. S.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2010
, “
Premixed Flame Impingement Heat Transfer With Induced Swirl
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4333
4336
.10.1016/j.ijheatmasstransfer.2010.05.048
68.
Jusionis
,
V. J.
,
1970
, “
Heat Transfer From Impinging Gas Jets on an Enclosed Concave Surface
,”
J. Aircraft
,
7
(
1
), pp.
87
88
.10.2514/3.44127
69.
Metzger
,
D. E.
,
Yamashita
,
T.
, and
Jenkins
,
C. W.
,
1969
, “
Impingement Cooling of Concave Surfaces With Lines of Circular Air Jets
,”
ASME J. Eng. Power
,
91
(
3
), pp.
149
155
.10.1115/1.3574713
70.
Fenot
,
M.
,
Dorignac
,
E.
, and
Vullierme
,
J.-J.
,
2008
, “
An Experimental Study on Hot Round Jets Impinging a Concave Surface
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
945
956
.10.1016/j.ijheatfluidflow.2008.03.015
71.
Craft
,
T. J.
,
Iacovides
,
H.
, and
Mostafa
,
N. A.
,
2008
, “
Modelling of Three-Dimensional Jet Array Impingement and Heat Transfer on a Concave Surface
,”
Int. J. Heat Fluid Flow
,
29
(
3
), pp.
687
702
.10.1016/j.ijheatfluidflow.2008.03.005
72.
Iacovides
,
H.
,
Kounadis
,
D.
,
Launder
,
B. E.
,
Li
,
J.
, and
Xu
,
Z.
,
2005
, “
Experimental Study of the Flow and Thermal Development of a Row of Cooling Jets Impinging on a Rotating Concave Surface
,”
ASME J. Turbomach.
,
127
(
1
), pp.
222
229
.10.1115/1.1812778
73.
Yang
,
G.
,
Choi
,
M.
, and
Lee
,
J. S.
,
1999
, “
An Experimental Study of Slot Jet Impingement Cooling on Concave Surface: Effects of Nozzle Configuration and Curvature
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2199
2209
.10.1016/S0017-9310(98)00337-8
74.
Choi
,
M.
,
Yoo
,
H. S.
,
Yang
,
G.
,
Lee
,
J. S.
, and
Sohn
,
D. K.
,
2000
, “
Measurements of Impinging Jet Flow and Heat Transfer on a Semi-Circular Concave Surface
,”
Int. J. Heat Mass Transfer
,
43
(
10
), pp.
1811
1822
.10.1016/S0017-9310(99)00257-4
75.
Öztekin
,
E.
,
Aydin
,
O.
, and
Avcı
,
M.
,
2012
, “
Hydrodynamics of a Turbulent Slot Jet Flow Impinging on a Concave Surface
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1631
1638
.10.1016/j.icheatmasstransfer.2012.10.015
76.
Öztekin
,
E.
,
Aydin
,
O.
, and
Avcı
,
M.
,
2013
, “
Heat Transfer in a Turbulent Slot Jet Flow Impinging on Concave Surfaces
,”
Int. Commun. Heat Mass Transfer
,
44
, pp.
77
82
.10.1016/j.icheatmasstransfer.2013.03.006
77.
Sharif
,
M. A. R.
, and
Mothe
,
K. K.
,
2010
, “
Parametric Study of Turbulent Slot-Jet Impingement Heat Transfer From Concave Cylindrical Surfaces
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
428
442
.10.1016/j.ijthermalsci.2009.07.017
78.
Imbriale
,
M.
,
Ianiro
,
A.
,
Meola
,
C.
, and
Cardone
,
G.
,
2014
, “
Convective Heat Transfer by a Row of Jets Impinging on a Concave Surface
,”
Int. J. Therm. Sci.
,
75
, pp.
153
163
.10.1016/j.ijthermalsci.2013.07.017
79.
Bu
,
X.
,
Peng
,
L.
,
Lin
,
G.
,
Bai
,
L.
, and
Wen
,
D.
,
2016
, “
Jet Impingement Heat Transfer on a Concave Surface in a Wing Leading Edge: Experimental Study and Correlation Development
,”
Exp. Therm. Fluid Sci.
,
78
, pp.
199
207
.10.1016/j.expthermflusci.2016.06.006
80.
Martin
,
E. L.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2013
, “
Impingement Heat Transfer Enhancement on a Cylindrical, Leading Edge Model With Varying Jet Temperatures
,”
ASME J. Turbomach.
,
135
(
3
), p.
31021
.10.1115/1.4007529
81.
Taslim
,
M. E.
,
Setayeshgar
,
L.
, and
Spring
,
S. D.
,
2001
, “
An Experimental Evaluation of Advanced Leading Edge Impingement Cooling Concepts
,”
J. Turbomach.
,
123
(
1
), pp.
147
153
.10.1115/1.1331537
82.
Lee
,
C. H.
,
Lim
,
K. B.
,
Lee
,
S. H.
,
Yoon
,
Y. J.
, and
Sung
,
N. W.
,
2007
, “
A Study of the Heat Transfer Characteristics of Turbulent Round Jet Impinging on an Inclined Concave Surface Using Liquid Crystal Transient Method
,”
Exp. Therm. Fluid Sci.
,
31
(
6
), pp.
559
565
.10.1016/j.expthermflusci.2006.06.004
83.
Gau
,
C.
, and
Chung
,
C. M.
,
1991
, “
Surface Curvature Effect on Slot-Air-Jet Impingement Cooling Flow and Heat Transfer Process
,”
ASME J. Heat Transfer
,
113
(
4
), pp.
858
864
.10.1115/1.2911214
84.
Cornaro
,
C.
,
Fleischer
,
A. S.
,
Rounds
,
M.
, and
Goldstein
,
R. J.
,
2001
, “
Jet Impingement Cooling of a Convex Semi-Cylindrical Surface
,”
Int. J. Therm. Sci.
,
40
(
10
), pp.
890
898
.10.1016/S1290-0729(01)01275-3
85.
Cornaro
,
C.
,
Fleischer
,
A. S.
, and
Goldstein
,
R. J.
,
1999
, “
Flow Visualization of a Round Jet Impinging on Cylindrical Surfaces
,”
Exp. Therm. Fluid Sci.
,
20
(
2
), pp.
66
78
.10.1016/S0894-1777(99)00032-1
86.
Ingole
,
S. B.
, and
Sundaram
,
K. K.
,
2016
, “
Experimental Average Nusselt Number Characteristics With Inclined Non-Confined Jet Impingement of Air for Cooling Application
,”
Exp. Therm. Fluid Sci.
,
77
, pp.
124
131
.10.1016/j.expthermflusci.2016.04.016
87.
Goldstein
,
R. J.
, and
Franchett
,
M. E.
,
1988
, “
Heat Transfer From a Flat Surface to an Oblique Impinging Jet
,”
ASME J. Heat Transfer
,
110
(
1
), pp.
84
90
.10.1115/1.3250477
88.
Tong
,
A. Y.
,
2003
, “
On the Impingement Heat Transfer of an Oblique Free Surface Plane Jet
,”
Int. J. Heat Mass Transfer
,
46
(
11
), pp.
2077
2085
.10.1016/S0017-9310(02)00505-7
89.
Baghel
,
K.
,
Sridharan
,
A.
, and
Murallidharan
,
J. S.
,
2020
, “
Experimental and Numerical Study of Inclined Free Surface Liquid Jet Impingement
,”
Int. J. Therm. Sci.
,
154
, p.
106389
.10.1016/j.ijthermalsci.2020.106389
90.
Bhagwat
,
A. B.
, and
Sridharan
,
A.
,
2016
, “
Numerical Simulation of Oblique Air Jet Impingement on a Heated Flat Plate
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
1
), p.
011017
.10.1115/1.4034913
91.
Zhang
,
X.
,
Yarusevych
,
S.
, and
Peterson
,
S. D.
,
2019
, “
Experimental Investigation of Flow Development and Coherent Structures in Normal and Oblique Impinging Slot Jets
,”
Exp. Fluids
,
60
(
1
), p.
11
.10.1007/s00348-018-2653-6
92.
Parida
,
P. R.
,
Ekkad
,
S. V.
, and
Ngo
,
K.
,
2011
, “
Experimental and Numerical Investigation of Confined Oblique Impingement Configurations for High Heat Flux Applications
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1037
1050
.10.1016/j.ijthermalsci.2011.01.010
93.
Attalla
,
M.
,
Maghrabie
,
H. M.
, and
Specht
,
E.
,
2017
, “
Effect of Inclination Angle of a Pair of Air Jets on Heat Transfer Into the Flat Surface
,”
Exp. Therm. Fluid Sci.
,
85
, pp.
85
94
.10.1016/j.expthermflusci.2017.02.023
94.
Esposito
,
E. I.
,
Ekkad
,
S. V.
,
Kim
,
Y.
, and
Dutta
,
P.
,
2009
, “
Novel Jet Impingement Cooling Geometry for Combustor Liner Backside Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
2
), p.
21001
.10.1115/1.3202799
95.
Chi
,
Z.
,
Kan
,
R.
,
Ren
,
J.
, and
Jiang
,
H.
,
2013
, “
Experimental and Numerical Study of the Anti-Crossflows Impingement Cooling Structure
,”
Int. J. Heat Mass Transfer
,
64
, pp.
567
580
.10.1016/j.ijheatmasstransfer.2013.04.052
96.
Terzis
,
A.
,
Ott
,
P.
,
Cochet
,
M.
,
von Wolfersdorf
,
J.
, and
Weigand
,
B.
,
2014
, “
Effect of Varying Jet Diameter on the Heat Transfer Distributions of Narrow Impingement Channels
,”
ASME J. Turbomach.
,
137
(
2
), p. 0
21004
.10.1115/1.4028294
97.
Ji
,
Y.
,
Singh
,
P.
,
Ekkad
,
S. V.
, and
Zang
,
S.
,
2017
, “
Effect of Crossflow Regulation by Varying Jet Diameters in Streamwise Direction on Jet Impingement Heat Transfer Under Maximum Crossflow Condition
,”
Numer. Heat Transfer, Part A
,
72
(
8
), pp.
579
599
.10.1080/10407782.2017.1394136
98.
Madhavan
,
S.
,
Ramakrishnan
,
K. R.
,
Singh
,
P.
, and
Ekkad
,
S.
,
2019
, “
Jet Impingement Heat Transfer Enhancement by U-Shaped Crossflow Diverters
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p. 0
41005
.10.1115/1.4045514
99.
Jeng
,
T. M.
, and
Tzeng
,
S. C.
,
2007
, “
Experimental Study of Forced Convection in Metallic Porous Block Subject to a Confined Slot Jet
,”
Int. J. Therm. Sci.
,
46
(
12
), pp.
1242
1250
.10.1016/j.ijthermalsci.2007.01.007
100.
Jeng
,
T. M.
, and
Tzeng
,
S. C.
,
2005
, “
Numerical Study of Confined Slot Jet Impinging on Porous Metallic Foam Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4685
4694
.10.1016/j.ijheatmasstransfer.2005.06.032
101.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Wen
,
T.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2014
, “
An Experimental and Numerical Study of Finned Metal Foam Heat Sinks Under Impinging Air Jet Cooling
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1063
1074
.10.1016/j.ijheatmasstransfer.2014.05.053
102.
Shih
,
W. H.
,
Chou
,
F. C.
, and
Hsieh
,
W. H.
,
2007
, “
Experimental Investigation of the Heat Transfer Characteristics of Aluminum-Foam Heat Sinks With Restricted Flow Outlet
,”
ASME J. Heat Transfer
,
129
(
11
), pp.
1554
1563
.10.1115/1.2759972
103.
DeGroot
,
C. T.
,
Straatman
,
A. G.
, and
Betchen
,
L. J.
,
2009
, “
Modeling Forced Convection in Finned Metal Foam Heat Sinks
,”
ASME J. Electron. Packag.
,
131
(
2
), p.
021001
.10.1115/1.3103934
104.
Singh
,
P.
,
Nithyanandam
,
K.
, and
Mahajan
,
R. L.
,
2020
, “
An Experimental and Numerical Investigation of Forced Convection in High Porosity Aluminum Foams Subjected to Jet Array Impingement in Channel-Flow
,”
Int. J. Heat Mass Transfer
,
149
, p.
119107
.10.1016/j.ijheatmasstransfer.2019.119107
105.
Singh
,
P.
,
Nithyanandam
,
K.
,
Zhang
,
M.
, and
Mahajan
,
R. L.
,
2020
, “
The Effect of Metal Foam Thickness on Jet Array Impingement Heat Transfer in High-Porosity Aluminum Foams
,”
ASME J. Heat Transfer
,
142
(
5
), p.
052301
.10.1115/1.4045640
106.
Madhavan
,
S.
,
Singh
,
P.
, and
Ekkad
,
S.
,
2019
, “
Jet Impingement Heat Transfer Enhancement by Packing High-Porosity Thin Metal Foams Between Jet Exit Plane and Target Surface
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p. 0
61016
.10.1115/1.4043470
107.
Madhavan
,
S.
,
Sambamurthy
,
V. S.
,
Singh
,
P.
, and
Ekkad
,
S.
,
2019
, “
Effect of Pore Density on Jet Impingement Onto Thin Metal Foams Under Intermediate Crossflow Scheme
,”
ASME
Paper No. IMECE2019-10748.10.1115/IMECE2019-10748
You do not currently have access to this content.