Abstract

Proper dissipation of thermal energy has always been a need for desirable efficiency of a system. Extended surface aids in releasing the heat to the immediate surrounding by inducing an extra area. This particular work assesses thermal and fluid flow behavior of extended surfaces with circular and elliptic shaped cross section. Extended surfaces of unvaried cross section are mounted over a square plate arrayed in a staggered manner. With the aid of different thermofluidic parameters, the elliptic shaped pin fin is established to provide a higher thermal performance enhancement of nearly 15% over cylindrical pin fin at inlet flow velocity of 2.35 m/s. Further, for elevating the interaction between the surface of the fin and the fluid, elliptic fins are reoriented to form a split. In contrast to cylindrical shaped fin, modification using split shows better result with the highest heat transfer increment of nearly 25%. Further, in order to maximize Nusselt number (Nu), a single objective cuckoo search optimization analysis is done by adopting the response surface method. After analyzing the optimization, it is found that the maximum value of Nu is obtained at dimensionless transverse offset (TO*) = 0.125 and dimensionless longitudinal offset (LO*) = 0, which has been further validated with the numerical result within 0.97% accuracy. Further, for the cylindrical fin, the present simulations agree with the available empirical correlation within 6.22% accuracy.

References

1.
Sparrow
,
E. M.
, and
Vemuri
,
S. B.
,
1986
, “
Orientation Effects on Natural Convection/Radiation Heat Transfer From Pin-Fin Arrays
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
359
368
.10.1016/0017-9310(86)90206-1
2.
Zografos
,
A. I.
, and
Sunderland
,
J. E.
,
1990
, “
Natural Convection From Pin Fin Arrays
,”
Exp. Therm. Fluid Sci.
,
3
(
4
), pp.
440
449
.10.1016/0894-1777(90)90042-6
3.
Ledezma
,
G.
,
Morega
,
A. M.
, and
Bejan
,
A.
,
1996
, “
Optimal Spacing Between Pin Fins With Impinging Flow
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
570
577
.10.1115/1.2822670
4.
Ko
,
J.-H.
,
Ewing
,
M. E.
,
Guezennec
,
Y. G.
, and
Christensen
,
R. N.
,
2002
, “
Development of a Low Reynolds Number Enhanced Heat Transfer Surface Using Flow Visualization Techniques
,”
Int. J. Heat Fluid Flow
,
23
(
4
), pp.
444
454
.10.1016/S0142-727X(01)00140-0
5.
Kang
,
H. S.
,
2010
, “
Optimization of a Pin Fin With Variable Base Thickness
,”
ASME J. Heat Transfer
,
132
(
3
), p.
034501
.10.1115/1.4000048
6.
Sara
,
O. N.
,
Yapici
,
S.
, and
Yilmaz
,
M.
,
2001
, “
Second Law Analysis of a Rectangular Channels With Square Pin-Fin
,”
Int. Commun. Heat Mass Transfer
,
28
, pp.
617
630
.10.1016/S0735-1933(01)00266-4
7.
Tarchi
,
L.
,
Facchini
,
B.
, and
Zecchi
,
S.
,
2008
, “
Experimental Investigation of Innovative Internal Trailing Edge Cooling Configurations With Pentagonal Arrangement and Elliptic Pin Fin
,”
Int. J. Rotat. Mach.
,
2008
, pp.
1
10
.10.1155/2008/109120
8.
Tullius
,
J. F.
,
Tullius
,
T. K.
, and
Bayazitoglu
,
Y.
,
2012
, “
Optimization of Short Micro Pin Fins in Minichannels
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
3921
3932
.10.1016/j.ijheatmasstransfer.2012.03.022
9.
Wang
,
F.
,
Zhang
,
J.
, and
Wang
,
S.
,
2012
, “
Investigation on Flow and Heat Transfer Characteristics in Rectangular Channel With Drop-Shaped Pin Fins
,”
Propul. Power Res.
,
1
(
1
), pp.
64
70
.10.1016/j.jppr.2012.10.003
10.
Pandit
,
J.
,
Thompson
,
M.
,
Ekkad
,
S. V.
, and
Huxtable
,
S. T.
,
2014
, “
Effect of Pin Fin to Channel Height Ratio and Pin Fin Geometry on Heat Transfer Performance for Flow in Rectangular Channels
,”
Int. J. Heat Mass Transfer
,
77
, pp.
359
368
.10.1016/j.ijheatmasstransfer.2014.05.030
11.
Woodcock
,
C.
,
Yu
,
X.
,
Plawsky
,
J.
, and
Peles
,
Y.
,
2015
, “
Piranha Pin Fin (PPF)—Advanced Flow Boiling Microstructures With Low Surface Tension Dielectric Fluids
,”
Int. J. Heat Mass Transfer
,
90
, pp.
591
604
.10.1016/j.ijheatmasstransfer.2015.06.072
12.
Kundu
,
B.
,
Das
,
R.
,
Wankhade
,
P. A.
, and
Lee
,
K. S.
,
2018
, “
Heat Transfer Improvement of a Wet Fin Under Transient Response With a Unique Design Arrangement Aspect
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1239
1251
.10.1016/j.ijheatmasstransfer.2018.08.110
13.
Wankhade
,
P. A.
,
Kundu
,
B.
, and
Das
,
R.
,
2018
, “
Establishment of non-Fourier Heat Conduction Model for an Accurate Transient Thermal Response in Wet Fins
,”
Int. J. Heat Mass Transfer
,
126
, pp.
911
923
.10.1016/j.ijheatmasstransfer.2018.05.094
14.
Liang
,
C.
, and
Rao
,
Y.
,
2020
, “
Computational Analysis of Rotating Effects on Heat Transfer and Pressure Loss of Turbulent Flow in Detached Pin Fin Arrays With Various Clearances
,”
ASME J. Heat Transfer
,
142
(
12
), p.
121803
.10.1115/1.4048476
15.
Biswas
,
G.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1994
, “
Heat Transfer Enhancement in Fin-Tube Heat Exchangers by Winglet Type Vortex Generators
,”
Int. J. Heat Mass Transfer
,
37
(
2
), pp.
283
291
.10.1016/0017-9310(94)90099-X
16.
Kashyap
,
U.
,
Das
,
K.
, and
Debnath
,
B. K.
,
2018
, “
Effect of Surface Modification of a Rectangular Vortex Generator on Heat Transfer Rate From a Surface to Fluid
,”
I Int. J. Therm. Sci.
,
127
, pp.
61
78
.10.1016/j.ijthermalsci.2018.01.004
17.
Kashyap
,
U.
,
Das
,
K.
, and
Debnath
,
B. K.
,
2018
, “
Effect of Surface Modification of a Rectangular Vortex Generator on Heat Transfer Rate From a Surface to Fluid: An Extended Study
,”
Int. J. Therm. Sci.
,
134
, pp.
269
281
.10.1016/j.ijthermalsci.2018.08.020
18.
Datta
,
A.
,
Sharma
,
V.
,
Sanyal
,
D.
, and
Das
,
P.
,
2019
, “
A Conjugate Heat Transfer Analysis of Performance for Rectangular Microchannel With Trapezoidal Cavities and Ribs
,”
Int. J. Therm. Sci.
,
138
, pp.
425
446
.10.1016/j.ijthermalsci.2018.12.020
19.
Bezbaruah
,
P. J.
,
Das
,
R. S.
, and
Sarkar
,
B. K.
,
2020
, “
Overall Performance Analysis and GRA Optimization of Solar Air Heater With Truncated Half Conical Vortex Generators
,”
Solar Energy
,
196
, pp.
637
652
.10.1016/j.solener.2019.12.057
20.
Ahmadi
,
P.
,
Hajabdollahi
,
H.
, and
Dincer
,
I.
,
2011
, “
Cost and Entropy Generation Minimization of a Cross-Flow Plate Fin Heat Exchanger Using Multi-Objective Genetic Algorithm
,”
ASME J. Heat Transfer
,
133
(
2
), p.
021801
.10.1115/1.4002599
21.
Das
,
R.
, and
Kundu
,
B.
,
2018
, “
Direct and Inverse Approaches for Analysis and Optimization of Fins Under Sensible and Latent Heat Load
,”
Int. J. Heat Mass Transfer
,
124
, pp.
331
343
.10.1016/j.ijheatmasstransfer.2018.03.059
22.
Das
,
R.
, and
Kundu
,
B.
,
2021
, “
New Forward and Inverse Solutions for Wet Fins of Generalized Profiles With All Nonlinear Phenomena
,”
ASME J. Heat Transfer
,
143
(
2
), p.
021401
.10.1115/1.4048923
23.
Aasi
,
H. K.
, and
Mishra
,
M.
, “
Detailed Design Optimisation of Three-Fluid Parallel-Flow Plate-Fin Heat Exchanger Using Second Law Analysis
,”
ASME J. Heat Transfer
, accepted.10.1115/1.4047151
24.
Wang
,
Z.
, and
Li
,
Y.
,
2015
, “
Irreversibility Analysis for Optimization Design of Plate Fin Heat Exchangers Using a Multi-Objective Cuckoo Search Algorithm
,”
Energy Convers. Manage.
,
101
, pp.
126
135
.10.1016/j.enconman.2015.05.009
25.
Ouaarab
,
A.
,
Ahiod
,
B.
, and
Yang
,
X. S.
,
2014
, “
Discrete Cuckoo Search Algorithm for the Travelling Salesman Problem
,”
Neural Comput. Appl.
,
24
(
7–8
), pp.
1659
1669
.10.1007/s00521-013-1402-2
26.
Brinkmann
,
R.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
,
1987
, “
Enhancement of Convective Heat Transfer From Small Heat Sources to Liquid Coolants Using Strip Fins
,”
Exp. Heat Transfer
,
1
(
4
), pp.
315
330
.10.1080/08916158708946349
27.
Ranjan
,
A.
,
Yadav
,
S. K.
, and
Das
,
K.
,
2020
, “
Thermal and Flow Analysis of Split Drop-Shaped Pin Fins for Improved Heat Transfer Rate
,”
J. Inst. Eng. (India): Ser. C
,
101
(
2
), pp.
375
382
.10.1007/s40032-019-00548-4
28.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2008
, “
Modeling of Cylindrical Pin-Fin Heat Sinks for Electronic Packaging
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
31
(
3
), pp.
536
545
.10.1109/TCAPT.2008.2002554
29.
Kumar
,
A.
,
Singh
,
K.
, and
Das
,
R.
,
2019
, “
Response Surface Based Experimental Analysis and Thermal Resistance Model of a Thermoelectric Power Generation System
,”
Appl. Therm. Eng.
,
159
, p.
113935
.10.1016/j.applthermaleng.2019.113935
30.
Webb
,
R. L.
, and
Kim
,
N. H.
,
2005
,
Principles of Enhanced Heat Transfer
,
Taylor and Francis
,
New York
.
31.
Rajabioun
,
R.
,
2011
, “
Cuckoo Optimization Algorithm
,”
Appl. Soft Comput.
,
11
(
8
), pp.
5508
5518
.10.1016/j.asoc.2011.05.008
32.
Yang
,
X.
, and
Deb
,
S.
,
2009
, “
Cuckoo Search Via Levy Flights
,”
Proceedings of the World Congress on Nature & Biologically Inspired Computing (NaBIC 2009)
,
IEEE Publications
,
India
, Dec. 9–11, Paper No. 41, pp.
210
214
.10.1109/NABIC.2009.5393690
33.
Anglada
,
E.
,
Martinez-Jimenez
,
L.
, and
Garmendia
,
I.
,
2017
, “
Performance of Gradient-Based Solutions Versus Genetic Algorithms in the Correlation of Thermal Mathematical Models of Spacecrafts
,”
Int. J. Aerosp. Eng.
,
2017
, pp.
1
12
.10.1155/2017/7683457
34.
Das
,
R.
,
Mishra
,
S. C.
,
Ajith
,
M.
, and
Uppaluri
,
R.
,
2008
, “
An Inverse Analysis of a Transient 2-D Conduction–Radiation Problem Using the Lattice Boltzmann Method and the Finite Volume Method Coupled With the Genetic Algorithm
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
11
), pp.
2060
2077
.10.1016/j.jqsrt.2008.01.011
You do not currently have access to this content.