Abstract

Turbulent flow and convective heat transfer of kerosene in coiled pipes with different wall boundary conditions and curvature radii of coiled pipes are numerically studied. The Reynolds-averaged Navier–Stokes equations are solved by finite volume method and the realizable k–ε model is applied for turbulence modeling. The fluid media is aviation kerosene with an inlet supercritical pressure of 3 MPa and an inlet temperature of 400 K. The present results provide temperature and velocity fields as well as distributions of turbulence kinetic energy and streamlines at different axial locations along the flow direction. The Nusselt number at the outer side of the pipe wall is higher than that at the inner side by 75%. Compared to a straight pipe with the same pipe radius of 6 mm and inlet flow conditions, the coiled pipe with a curvature radius of 192.5 mm can increase the averaged heat transfer coefficient by 28.5%. Meanwhile, it is found that when the curvature ratio increases, the effect of secondary flow in the cross section of pipe is more significant and the heat transfer effect at different locations of the pipe wall also changes significantly. In addition, the present results also reveal that heat transfer deterioration takes place for the kerosene flow in coiled pipe with an increased wall heat flux due to the state change of kerosene from liquid to supercritical.

References

1.
Berger
,
S. A.
,
Talbot
,
L.
, and
Yao
,
L. S.
,
1983
, “
Flow in Curved Pipes
,”
Annu. Rev. Fluid Mech.
,
15
(
1
), pp.
461
512
.10.1146/annurev.fl.15.010183.002333
2.
Bai
,
B.
,
Guo
,
L.
,
Feng
,
Z.
, and
Chen
,
X.
,
1999
, “
Turbulent Heat Transfer in a Horizontally Coiled Tube
,”
Heat Transfer-Asian Res.
,
28
(
5
), pp.
395
403
.10.1002/(SICI)1523-1496(1999)28:5<395::AID-HTJ5>3.0.CO;2-Y
3.
Futagami
,
K.
, and
Aoyama
,
Y.
,
1988
, “
Laminar Heat Transfer in Helically Coiled Tubes
,”
Int. J. Heat Mass Transfer
,
31
, pp.
387
396
.10.1016/0017-9310(88)90021-X
4.
Aly
,
W. I.
,
Inaba
,
H.
,
Haruki
,
H.
, and
Horibe
,
A.
,
2006
, “
Drag and Heat Transfer Reduction Phenomena of Drag-Reducing Surfactant Solutions in Straight and Helical Pipes
,”
ASME J. Heat Transfer
,
128
(
8
), pp.
800
810
.10.1115/1.2217751
5.
Ito
,
H.
,
1959
, “
Friction Factors for Turbulent Flow in Curved Pipes
,”
ASME J. Basic Eng.
,
81
, pp.
123
124
.10.1115/1.4008390
6.
Kalb
,
C. E.
, and
Seader
,
J. D.
,
1972
, “
Heat and Mass Transfer Phenomena for Viscous Flow in Curved Circular Tubes
,”
Int. J. Heat Mass Transfer
,
15
(
4
), pp.
801
817
.10.1016/0017-9310(72)90122-6
7.
Manlapaz
,
R. L.
, and
Churchill
,
S. W.
,
1981
, “
Fully Developed Laminar Convection From a Helical Coil
,”
Chem. Eng. Commun.
,
9
(
1–6
), pp.
185
200
.10.1080/00986448108911023
8.
Kao
,
H. C.
,
1987
, “
Torsion Effect on Fully Developed Flow in a Helical Pipe
,”
J. Fluid Mech.
,
184
, pp.
335
356
.10.1017/S002211208700291X
9.
Xin
,
R. C.
, and
Ebadian
,
M. A.
,
1997
, “
The Effects of Prandtl Numbers on Local and Average Convective Heat Transfer Characteristics in Helical Pipe
,”
ASME J. Heat Transfer
,
119
(
3
), pp.
467
473
.10.1115/1.2824120
10.
Xing
,
Y. F.
,
Zhong
,
F. Q.
, and
Zhang
,
X. Y.
,
2014
, “
Numerical Study of Turbulent Flow and Convective Heat Transfer Characteristics in Helical Rectangular Ducts
,”
ASME J. Heat Transfer
,
136
(
12
), p.
121701
.10.1115/1.4028583
11.
Lin
,
C. X.
,
Zhang
,
P.
, and
Ebadian
,
M. A.
,
1997
, “
Laminar Forced Convection in the Entrance Region of Helical Pipers
,”
Int. J. Heat Mass Transfer
,
40
(
14
), pp.
3293
3304
.10.1016/S0017-9310(96)00381-X
12.
Soh
,
W. Y.
, and
Berger
,
S. A.
,
1984
, “
Laminar Entrance Flow in a Curved Pipe
,”
J. Fluid Mech.
,
148
, pp.
109
135
.10.1017/S0022112084002275
13.
Janssen
,
L. A. M.
, and
Hoogendoorn
,
C. J.
,
1978
, “
Laminar Convective Heat Transfer in Helical TUBES
,”
Int. J. Heat Mass Transfer
,
21
(
9
), pp.
1197
1206
.10.1016/0017-9310(78)90138-2
14.
Austen
,
D. S.
, and
Soliman
,
H. M.
,
1988
, “
Laminar Flow and Heat Transfer in Helically Coiled Tubes With Substantial Pitch
,”
Exp. Therm. Fluid Sci.
,
1
(
2
), pp.
183
194
.10.1016/0894-1777(88)90035-0
15.
Fan
,
Y.
,
OuYang
,
X. P.
,
Wei
,
J. Y.
, and
Sui
,
J. D.
,
2018
, “
Experimental Study on Heat Transfer and Flow Characteristics of Helical Coil Water—Water Heat Exchanger
,”
Energy Conserv. Technol.
,
36
, pp.
347
351
.http://en.cnki.com.cn/Article_en/CJFDTotal-JNJS201804011.htm
16.
Li
,
X. W.
,
Zhao
,
J. Q.
,
Wu
,
X. X.
,
Luo
,
X. W.
, and
He
,
S. Y.
,
2015
, “
Flow Resistance Measurement of Helical Tube of HTGR Once Through Steam Generator
,”
At. Energy Sci. Technol.
,
49
, pp.
259
264
.http://www.aest.org.cn/en/y2015/v49/izengkan1/259
17.
Petley
,
D. H.
, and
Jones
,
S. C.
,
1992
, “
Thermal Management for a Mach-5 Cruise Aircraft Using Endothermic Fuel
,”
J. Aircr.
,
29
(
3
), pp.
384
389
.10.2514/3.46173
18.
Sobel
,
D. R.
, and
Spadaccini
,
L. J.
,
1997
, “
Hydrocarbon Fuel Cooling Technologies for Advanced Propulsion
,”
ASME J. Eng. Gas Turbines Power
,
119
(
2
), pp.
344
351
.10.1115/1.2815581
19.
Liu
,
Z. Q.
,
Liang
,
J. H.
, and
Pan
,
Y.
, “
Numerical Analysis of Heat Transfer Deterioration of China RP-3 Aviation Kerosene in a Circular Tube at Supercritical Pressures
,”
AIAA/ASME Jt. Thermophys. Heat Transfer
, pp.
2014
3588
.10.2514/6.2014-3358
20.
Dang
,
G. X.
,
Zhong
,
F. Q.
,
Zhang
,
Y. J.
, and
Zhang
,
X. Y.
,
2015
, “
Numerical Study of Heat Transfer Deterioration of Turbulent Supercritical Kerosene Flow in Heated Circular Tube
,”
Int. J. Heat Mass Transfer
,
85
, pp.
1003
1011
.10.1016/j.ijheatmasstransfer.2015.02.052
21.
Wang
,
Y. H.
,
Li
,
S. F.
, and
Dong
,
M.
,
2015
, “
Numerical Study on Heat Transfer Deterioration of Supercritical Aviation Kerosene in Vertical Upward Circular Tubes
,”
J. Propul. Technol.
,
36
(
1
), pp.
97
103
.
22.
Hua
,
Y. X.
,
Wang
,
Y.
, and
Meng
,
H.
,
2010
, “
A Numerical Study of Supercritical Forced Convective Heat Transfer of n-Heptane Inside a Horizontal Miniature Tube
,”
J. Supercrit. Fluids
,
52
(
1
), pp.
36
46
.10.1016/j.supflu.2009.12.003
23.
Feng
,
Y.
,
Qin
,
J.
,
Bao
,
W.
,
Yang
,
Q. C.
,
Huang
,
H. Y.
, and
Wang
,
Z. Q.
,
2014
, “
Numerical Analysis of Convective Heat Transfer Characteristics of Supercritical Hydrocarbon Fuel in Cooling Panel With Local Flow Blockage Structure
,”
J. Supercrit. Fluids
,
88
, pp.
8
16
.10.1016/j.supflu.2014.01.009
24.
Kanungo
,
D. K.
,
Shrivastava
,
S. K.
,
Singh
,
N. K.
, and
Sahu
,
K. C.
,
2020
, “
Heat Transfer in Supercritical Steam Flowing Inside Spiral Tubes
,”
ASME J. Heat Transfer
,
142
(
11
), p.
111901
.10.1115/1.4047641
25.
Srinivasan
,
P. S.
,
Nandapurkar
,
S.
, and
Holland
,
F. A.
,
1970
, “
Friction Factor for Coils
,”
Trans. Inst. Chem. Eng.
,
48
, pp.
156
161
.
26.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
27.
Zhong
,
F. Q.
,
Fan
,
X. J.
,
Yu
,
G.
,
Li
,
J. G.
, and
Sung
,
C. J.
,
2009
, “
Heat Transfer of Aviation Kerosene at Supercritical Conditions
,”
J. Thermophys. Heat Transfer
,
23
(
3
), pp.
543
550
.10.2514/1.41619
28.
Leach
,
J. W.
,
Chappelear
,
P. S.
, and
Leland
,
T. W.
,
1968
, “
Use of Molecular Shape Factors in Vapor-Liquid Equilibrium Calculations With the Corresponding States Principle
,”
Am. Inst. Chem. Eng. J.
,
14
(
4
), pp.
568
576
.10.1002/aic.690140407
29.
Li
,
X. F.
,
Huai
,
X. L.
,
Cai
,
J.
,
Zhong
,
F. Q.
,
Fan
,
X. J.
, and
Guo
,
Z. X.
,
2011
, “
Convective Heat Transfer Characteristics of China RP-3 Aviation Kerosene at Supercritical Pressure
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2360
2366
.10.1016/j.applthermaleng.2011.03.036
30.
Jayakumar
,
J. S.
,
Mahajani
,
S. M.
,
Mandal
,
J. C.
,
Iyer
,
K. N.
, and
Vijayan
,
P. K.
,
2010
, “
CFD Analysis of Single-Phase Flows Inside Helically Coiled Tubes
,”
Comput. Chem. Eng.
,
34
(
4
), pp.
430
446
.10.1016/j.compchemeng.2009.11.008
31.
Linne
,
D. L.
, and
Meyer
,
M. L.
,
1997
, “
Evaluation of Heat Transfer and Thermal Stability of Supercritical JP-7 Fuel
,”
AIAA
Paper No. 97-3041.10.2514/6.1997-3041
32.
Hu
,
Z. H.
,
Chen
,
T. K.
,
Luo
,
Y. S.
, and
Zheng
,
J. X.
,
2002
, “
Heat Transfer to Kerosene at Supercritical Pressure in Small-Diameter Tube With Large Heat Flux
,”
J. Chem. Ind.
,
53
(
2
), pp.
134
138
.
You do not currently have access to this content.