Abstract

The mixed convection in a thin liquid film flow over a horizontal plate is investigated under finite Prandtl numbers. The gas–liquid interface is considered free, nondeformable and subject to surface tension gradients and convection, while gravity is assumed negligible. Therefore, thermocapillary instead of buoyancy effects appears due to the unstable temperature stratification induced by the internal heating generated by viscous dissipation. A linear and modal stability analysis of this model is then performed to identify its convective/absolute nature. This is achieved by solving the resulting differential eigenvalue problem with a shooting method. Longitudinal rolls are the most unstable at the onset of instability for most parametric conditions. Otherwise, transverse rolls are the first to become convectively unstable. Finally, longitudinal rolls are absolutely stable. A transition to absolute instability occurs through transverse rolls, but only within a limited region in parametric space.

References

References
1.
Bénard
,
H.
,
1901
,
Les Tourbillons Cellulaires Dans Une Nappe Liquide Propageant de la Chaleur Par Convection: En Régime Permanent
,
Gauthier-Villars
,
Paris, France
.
2.
Rayleigh
,
L.
,
1916
, “
LIX. On Convection Currents in a Horizontal Layer of Fluid, When the Higher Temperature is on the Under Side
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
32
(
192
), pp.
529
546
.10.1080/14786441608635602
3.
Block
,
M. J.
,
1956
, “
Surface Tension as the Cause of Bénard Cells and Surface Deformation in a Liquid Film
,”
Nature
,
178
(
4534
), pp.
650
651
.10.1038/178650a0
4.
Pearson
,
J.
,
1958
, “
On Convection Cells Induced by Surface Tension
,”
J. Fluid Mech.
,
4
(
5
), pp.
489
500
.10.1017/S0022112058000616
5.
Nield
,
D. A.
,
1964
, “
Surface Tension and Buoyancy Effects in Cellular Convection
,”
J. Fluid Mech.
,
19
(
3
), pp.
341
352
.10.1017/S0022112064000763
6.
Craster
,
R.
, and
Matar
,
O.
,
2009
, “
Dynamics and Stability of Thin Liquid Films
,”
Rev. Mod. Phys.
,
81
(
3
), pp.
1131
1198
.10.1103/RevModPhys.81.1131
7.
Alves
,
L. S. de B.
, and
Kelly
,
R. E.
,
2004
, “
Depth Ratio Effects on Stationary and Oscillatory Onset of Surface Tension Gradient-Driven Convection in Two-Layer Systems
,” Ten
th Brazilian Congress of Thermal Engineering and Sciences
,
Rio de Janeiro, Brazil
, Nov. 29-Dec. 3, Paper No. c4–0221.
8.
Simanovskii
,
I. B.
, and
Nepomnyashchy
,
A. A.
,
1993
, “
Convective Instabilities in Systems With Interface
,”
Gordon and Breach Science Publishers S.A
,
Amsterdam, The Netherlands
.
9.
Nepomnyashchy
,
A. A.
,
Velarde
,
M. G.
, and
Colinet
,
P.
,
2001
,
Interfacial Phenomena and Convection
(Monographs and Surveys in Pure and Applied Mathematics), Vol.
124
,
Chapman & Hall/CRC
,
Boca Raton, FL
.
10.
R.
Narayanan
, and
D.
Schwabe
, eds.,
2003
,
Interfacial Fluid Dynamics and Transport Processes
,
Springer Verlag
, Berlin.
11.
Scriven
,
L.
, and
Sternling
,
C.
,
1964
, “
On Cellular Convection Driven by Surface-Tension Gradients: Effects of Mean Surface Tension and Surface Viscosity
,”
J. Fluid Mech.
,
19
(
3
), pp.
321
340
.10.1017/S0022112064000751
12.
Takashima
,
M.
,
1981
, “
Surface Tension Driven Instability in a Horizontal Liquid Layer With a Deformable Free Surface—I: Stationary Convection
,”
J. Phys. Soc. Jpn.
,
50
(
8
), pp.
2745
2750
.10.1143/JPSJ.50.2745
13.
Takashima
,
M.
,
1981
, “
Surface Tension Driven Instability in a Horizontal Liquid Layer With a Deformable Free Surface—II: Overstability
,”
J. Phys. Soc. Jpn.
,
50
(
8
), pp.
2751
2756
.10.1143/JPSJ.50.2751
14.
Laure
,
P.
, and
Roux
,
B.
,
1989
, “
Linear and Non-Linear Analysis of the Hadley Circulation
,”
J. Crystal Growth
,
97
(
1
), pp.
226
234
.10.1016/0022-0248(89)90264-9
15.
Bammou
,
L.
,
Blancher
,
S.
,
Le Guer
,
Y.
,
El Omari
,
K.
, and
Benhamou
,
B.
,
2014
, “
Linear Stability Analysis of Poiseuille–Bénard–Marangoni Flow in a Horizontal Infinite Liquid Film
,”
Int. Commun. Heat Mass Transfer
,
54
, pp.
126
131
.10.1016/j.icheatmasstransfer.2014.03.008
16.
Celli
,
M.
,
Barletta
,
A.
, and
Alves
,
L. S. D B.
,
2015
, “
Marangoni Instability of a Liquid Film Flow With Viscous Dissipation
,”
Phys. Rev. E
,
91
(
2
), p.
023006
.10.1103/PhysRevE.91.023006
17.
Briggs
,
R. J.
,
1964
,
Electron-Stream Interaction With Plasmas
, Res. Monogr., Vol.
29
,
MIT
,
Cambridge, MA
.
18.
Bers
,
A.
,
1975
,
Physique Des Plasmas (Linear Waves and Instabilities)
,
Gordon and Breach Science Publishers S.A
., New York, pp.
117
215
.
19.
Betchov
,
R.
, and
Criminale
,
W. O.
,
1966
, “
Spatial Instability of the Inviscid Jet and Wake
,”
Phys. Fluids
,
9
(
2
), pp.
359
362
.10.1063/1.1761679
20.
Gaster
,
M.
,
1968
, “
Growth of Disturbances in Both Space and Time
,”
Phys. Fluids
,
11
(
4
), pp.
723
727
.10.1063/1.1691990
21.
Huerre
,
P.
, and
Monkewitz
,
P. A.
,
1985
, “
Absolute and Convective Instabilities in Free Shear Layers
,”
J. Fluid Mech.
,
159
(
1
), pp.
151
168
.10.1017/S0022112085003147
22.
Huerre
,
P.
, and
Monkewitz
,
P. A.
,
1990
, “
Local and Global Instabilities in Spatially Developing Flows
,”
Annu. Rev. Fluid Mech.
,
22
(
1
), pp.
473
537
.10.1146/annurev.fl.22.010190.002353
23.
Suslov
,
S. A.
,
2006
, “
Numerical Aspects of Searching Convective/Absolute Instability Transition
,”
J. Comput. Phys.
,
212
(
1
), pp.
188
217
.10.1016/j.jcp.2005.06.017
24.
Alves
,
L. S. D B.
,
Hirata
,
S. C.
,
Schuabb
,
M.
, and
Barletta
,
A.
,
2019
, “
Identifying Linear Absolute Instabilities From Differential Eigenvalue Problems Using Sensitivity Analysis
,”
J. Fluid Mech.
,
870
, pp.
941
969
.10.1017/jfm.2019.275
25.
Avanci
,
M. P.
,
Rodríguez
,
D.
, and
Alves
,
L. S. D B.
,
2019
, “
A Geometrical Criterion for Absolute Instability in Separated Boundary Layers
,”
Phys. Fluids
,
31
(
1
), p.
014103
.10.1063/1.5079536
26.
Barletta
,
A.
,
Celli
,
M.
,
Brandão
,
P. V.
, and
Alves
,
L. S. D B.
,
2020
, “
Wavepacket Instability in a Rectangular Porous Channel Uniformly Heated From Below
,”
Int. J. Heat Mass Transfer
,
147
, p.
118993
.10.1016/j.ijheatmasstransfer.2019.118993
27.
Schuabb
,
M.
,
Alves
,
L. S. D B.
, and
Hirata
,
S.
,
2020
, “
Two- and Three-Dimensional Absolute Instabilities in a Porous Medium With Inclined Temperature Gradient and Vertical Throughflow
,”
Transp. Porous Media
,
132
(
1
), pp.
135
155
.10.1007/s11242-020-01383-3
28.
Barletta
,
A.
,
2019
,
Routes to Absolute Instability in Porous Media
,
Springer
,
New York
.
29.
Alves
,
L. S.
,
de
,
B.
,
Hirata
,
S. C.
, and
Ouarzazi
,
M. N.
,
2016
, “
Linear Onset of Convective Instability for Rayleigh-Bénard-Couette Flows of Viscoelastic Fluids
,”
J. Non-Newtonian Fluid Mech.
,
231
, pp.
79
90
.10.1016/j.jnnfm.2016.03.007
30.
Brevdo
,
L.
,
2009
, “
Three-Dimensional Absolute and Convective Instabilities at the Onset of Convection in a Porous Medium With Inclined Temperature Gradient and Vertical Throughflow
,”
J. Fluid Mech.
,
641
, pp.
475
487
.10.1017/S0022112009992163
31.
Braga
,
N. R.
, Jr.
,
Brandão
,
P. V.
,
Alves
,
L. S. D B.
, and
Barletta
,
A.
,
2017
, “
Convective Instability Induced by Internal and External Heating in a Fluid Saturated Porous Medium
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2393
2402
.10.1016/j.ijheatmasstransfer.2017.01.075
32.
Mills
,
A. F.
,
1999
,
Basic Heat and Mass Transfer
,
Pearson College Division
,
New York
.
33.
Bender
,
C. M.
, and
Orszag
,
S. A.
,
1999
,
Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory
,
Springer
,
New York
.
34.
Chomaz
,
J. M.
,
Huerre
,
P.
, and
Redekopp
,
L. G.
,
1991
, “
A Frequency Selection Criterion in Spatially Developing Flows
,”
Stud. Appl. Math.
,
84
(
2
), pp.
119
144
.10.1002/sapm1991842119
You do not currently have access to this content.